从电池废料中提取可持续催化剂:二锂化阴极在能源和环境应用中的提取和催化潜力

IF 7.9 2区 化学 Q1 CHEMISTRY, PHYSICAL Current Opinion in Electrochemistry Pub Date : 2024-03-19 DOI:10.1016/j.coelec.2024.101488
Jeong Eun Yoo, Jiyoung Kim, Rin Jung, Kiyoung Lee
{"title":"从电池废料中提取可持续催化剂:二锂化阴极在能源和环境应用中的提取和催化潜力","authors":"Jeong Eun Yoo,&nbsp;Jiyoung Kim,&nbsp;Rin Jung,&nbsp;Kiyoung Lee","doi":"10.1016/j.coelec.2024.101488","DOIUrl":null,"url":null,"abstract":"<div><p>This review focuses on the extraction of lithium-ions (Li<sup>+</sup>) from the cathode of spent lithium-ion batteries (SLIB) and application of the delithiated cathode in catalytic reactions. Li<sup>+</sup> has been extracted from SLIB through electrochemical and chemical leaching methods. Despite challenges for extraction of Li<sup>+</sup>, delithiated cathode materials demonstrate substantial catalytic efficiency in water electrolysis, dye photodegradation, and photoelectrochemical applications. This enhanced catalytic performance is attributable to the favorable catalytic properties of the transition metal oxide components and numerous catalytically active defects and oxygen vacancies formed by delithiation. The findings underscore the potential of recycling SLIBs into valuable catalysts for environmental and energy-related applications, emphasizing the transformation of waste into resource through efficient material reutilization.</p></div>","PeriodicalId":11028,"journal":{"name":"Current Opinion in Electrochemistry","volume":null,"pages":null},"PeriodicalIF":7.9000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sustainable catalysts from battery waste: Extraction and catalytic potentials of delithiated cathodes in energy and environmental applications\",\"authors\":\"Jeong Eun Yoo,&nbsp;Jiyoung Kim,&nbsp;Rin Jung,&nbsp;Kiyoung Lee\",\"doi\":\"10.1016/j.coelec.2024.101488\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This review focuses on the extraction of lithium-ions (Li<sup>+</sup>) from the cathode of spent lithium-ion batteries (SLIB) and application of the delithiated cathode in catalytic reactions. Li<sup>+</sup> has been extracted from SLIB through electrochemical and chemical leaching methods. Despite challenges for extraction of Li<sup>+</sup>, delithiated cathode materials demonstrate substantial catalytic efficiency in water electrolysis, dye photodegradation, and photoelectrochemical applications. This enhanced catalytic performance is attributable to the favorable catalytic properties of the transition metal oxide components and numerous catalytically active defects and oxygen vacancies formed by delithiation. The findings underscore the potential of recycling SLIBs into valuable catalysts for environmental and energy-related applications, emphasizing the transformation of waste into resource through efficient material reutilization.</p></div>\",\"PeriodicalId\":11028,\"journal\":{\"name\":\"Current Opinion in Electrochemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2024-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Electrochemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2451910324000498\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Electrochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451910324000498","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

[显示省略]
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sustainable catalysts from battery waste: Extraction and catalytic potentials of delithiated cathodes in energy and environmental applications

This review focuses on the extraction of lithium-ions (Li+) from the cathode of spent lithium-ion batteries (SLIB) and application of the delithiated cathode in catalytic reactions. Li+ has been extracted from SLIB through electrochemical and chemical leaching methods. Despite challenges for extraction of Li+, delithiated cathode materials demonstrate substantial catalytic efficiency in water electrolysis, dye photodegradation, and photoelectrochemical applications. This enhanced catalytic performance is attributable to the favorable catalytic properties of the transition metal oxide components and numerous catalytically active defects and oxygen vacancies formed by delithiation. The findings underscore the potential of recycling SLIBs into valuable catalysts for environmental and energy-related applications, emphasizing the transformation of waste into resource through efficient material reutilization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Opinion in Electrochemistry
Current Opinion in Electrochemistry Chemistry-Analytical Chemistry
CiteScore
14.00
自引率
5.90%
发文量
272
审稿时长
73 days
期刊介绍: The development of the Current Opinion journals stemmed from the acknowledgment of the growing challenge for specialists to stay abreast of the expanding volume of information within their field. In Current Opinion in Electrochemistry, they help the reader by providing in a systematic manner: 1.The views of experts on current advances in electrochemistry in a clear and readable form. 2.Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications. In the realm of electrochemistry, the subject is divided into 12 themed sections, with each section undergoing an annual review cycle: • Bioelectrochemistry • Electrocatalysis • Electrochemical Materials and Engineering • Energy Storage: Batteries and Supercapacitors • Energy Transformation • Environmental Electrochemistry • Fundamental & Theoretical Electrochemistry • Innovative Methods in Electrochemistry • Organic & Molecular Electrochemistry • Physical & Nano-Electrochemistry • Sensors & Bio-sensors •
期刊最新文献
Insights into electrode–electrolyte interfaces by in situ scanning tunnelling microscopy Editorial Board Current status of ferro-/ferricyanide for redox flow batteries Modeling oxygen reduction activity loss mechanisms in atomically dispersed Fe–N–C electrocatalysts Machine learning-guided design, synthesis, and characterization of atomically dispersed electrocatalysts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1