Gopi Krishna Pitchika , B. Krishna Naik , G.V.V. Ramana , R. Nirupama , T. Sri Ranjani , K. Venkaiah , M. Hanuma Reddy , S.B. Sainath , Jangampalli Adi Pradeepkiran
{"title":"多菌灵诱导斑马鱼(Danio rerio)胚胎/幼体发育缺陷的转录组概况。","authors":"Gopi Krishna Pitchika , B. Krishna Naik , G.V.V. Ramana , R. Nirupama , T. Sri Ranjani , K. Venkaiah , M. Hanuma Reddy , S.B. Sainath , Jangampalli Adi Pradeepkiran","doi":"10.1016/j.cbpc.2024.109907","DOIUrl":null,"url":null,"abstract":"<div><p>Carbendazim is a widely used fungicide to protect agricultural and horticultural crops against a wide array of fungal species. Published reports have shown that the wide usage of carbendazim resulted in reprotoxicity, carcinogenicity, immunotoxicity, and developmental toxicity in mammalian models. However, studies related to the developmental toxicity of carbendazim in aquatic organisms are not clear. To address this gap, an attempt was made by exposing zebrafish embryos to carbendazim (800 μg/L) and assessing the phenotypic and transcriptomic profile at different developmental stages [24 hour post fertilization (hpf), 48 hpf, 72 hpf and 96 hpf). At 48 hpf, phenotypic abnormalities such as delay in hatching rate, deformed spinal axial curvature, and pericardial edema were observed in zebrafish larvae over its respective controls. At 72 hpf, exposure of zebrafish embryos exposed to carbendazim resulted in scoliosis; however, unexposed larvae did not exhibit signs of scoliosis. Interestingly, the transcriptomic analysis revealed a total of 1253 DEGs were observed at selected time points, while unique genes at 24 hpf, 48 hpf, 72 hpf and 96 hpf was found to be 76.54 %, 61.14 %, 92.98 %, and 68.28 %, respectively. Functional profiling of downregulated genes revealed altered transcriptomic markers associated with phototransduction (24 hpf and 72 hpf), immune system (48 hpf), and SNARE interactions in the vesicular pathway (96 hpf). Whereas functional profiling of upregulated genes revealed altered transcriptomic markers associated with riboflavin metabolism (24 hpf), basal transcription factors (48 hpf), insulin signaling pathway (72 hpf), and primary bile acid biosynthesis (96 hpf). Taken together, carbendazim-induced developmental toxicity could be ascribed to pleiotropic responses at the molecular level, which in turn might reflect phenotypic abnormalities.</p></div>","PeriodicalId":10602,"journal":{"name":"Comparative Biochemistry and Physiology C-toxicology & Pharmacology","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transcriptomic profile in carbendazim-induced developmental defects in zebrafish (Danio rerio) embryos/larvae\",\"authors\":\"Gopi Krishna Pitchika , B. Krishna Naik , G.V.V. Ramana , R. Nirupama , T. Sri Ranjani , K. Venkaiah , M. Hanuma Reddy , S.B. Sainath , Jangampalli Adi Pradeepkiran\",\"doi\":\"10.1016/j.cbpc.2024.109907\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Carbendazim is a widely used fungicide to protect agricultural and horticultural crops against a wide array of fungal species. Published reports have shown that the wide usage of carbendazim resulted in reprotoxicity, carcinogenicity, immunotoxicity, and developmental toxicity in mammalian models. However, studies related to the developmental toxicity of carbendazim in aquatic organisms are not clear. To address this gap, an attempt was made by exposing zebrafish embryos to carbendazim (800 μg/L) and assessing the phenotypic and transcriptomic profile at different developmental stages [24 hour post fertilization (hpf), 48 hpf, 72 hpf and 96 hpf). At 48 hpf, phenotypic abnormalities such as delay in hatching rate, deformed spinal axial curvature, and pericardial edema were observed in zebrafish larvae over its respective controls. At 72 hpf, exposure of zebrafish embryos exposed to carbendazim resulted in scoliosis; however, unexposed larvae did not exhibit signs of scoliosis. Interestingly, the transcriptomic analysis revealed a total of 1253 DEGs were observed at selected time points, while unique genes at 24 hpf, 48 hpf, 72 hpf and 96 hpf was found to be 76.54 %, 61.14 %, 92.98 %, and 68.28 %, respectively. Functional profiling of downregulated genes revealed altered transcriptomic markers associated with phototransduction (24 hpf and 72 hpf), immune system (48 hpf), and SNARE interactions in the vesicular pathway (96 hpf). Whereas functional profiling of upregulated genes revealed altered transcriptomic markers associated with riboflavin metabolism (24 hpf), basal transcription factors (48 hpf), insulin signaling pathway (72 hpf), and primary bile acid biosynthesis (96 hpf). Taken together, carbendazim-induced developmental toxicity could be ascribed to pleiotropic responses at the molecular level, which in turn might reflect phenotypic abnormalities.</p></div>\",\"PeriodicalId\":10602,\"journal\":{\"name\":\"Comparative Biochemistry and Physiology C-toxicology & Pharmacology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comparative Biochemistry and Physiology C-toxicology & Pharmacology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1532045624000759\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Biochemistry and Physiology C-toxicology & Pharmacology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1532045624000759","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Transcriptomic profile in carbendazim-induced developmental defects in zebrafish (Danio rerio) embryos/larvae
Carbendazim is a widely used fungicide to protect agricultural and horticultural crops against a wide array of fungal species. Published reports have shown that the wide usage of carbendazim resulted in reprotoxicity, carcinogenicity, immunotoxicity, and developmental toxicity in mammalian models. However, studies related to the developmental toxicity of carbendazim in aquatic organisms are not clear. To address this gap, an attempt was made by exposing zebrafish embryos to carbendazim (800 μg/L) and assessing the phenotypic and transcriptomic profile at different developmental stages [24 hour post fertilization (hpf), 48 hpf, 72 hpf and 96 hpf). At 48 hpf, phenotypic abnormalities such as delay in hatching rate, deformed spinal axial curvature, and pericardial edema were observed in zebrafish larvae over its respective controls. At 72 hpf, exposure of zebrafish embryos exposed to carbendazim resulted in scoliosis; however, unexposed larvae did not exhibit signs of scoliosis. Interestingly, the transcriptomic analysis revealed a total of 1253 DEGs were observed at selected time points, while unique genes at 24 hpf, 48 hpf, 72 hpf and 96 hpf was found to be 76.54 %, 61.14 %, 92.98 %, and 68.28 %, respectively. Functional profiling of downregulated genes revealed altered transcriptomic markers associated with phototransduction (24 hpf and 72 hpf), immune system (48 hpf), and SNARE interactions in the vesicular pathway (96 hpf). Whereas functional profiling of upregulated genes revealed altered transcriptomic markers associated with riboflavin metabolism (24 hpf), basal transcription factors (48 hpf), insulin signaling pathway (72 hpf), and primary bile acid biosynthesis (96 hpf). Taken together, carbendazim-induced developmental toxicity could be ascribed to pleiotropic responses at the molecular level, which in turn might reflect phenotypic abnormalities.
期刊介绍:
Part C: Toxicology and Pharmacology. This journal is concerned with chemical and drug action at different levels of organization, biotransformation of xenobiotics, mechanisms of toxicity, including reactive oxygen species and carcinogenesis, endocrine disruptors, natural products chemistry, and signal transduction with a molecular approach to these fields.