测量微塑料水悬浮液的固有光学特性

IF 5.1 2区 地球科学 Q1 LIMNOLOGY Limnology and Oceanography Letters Pub Date : 2024-03-25 DOI:10.1002/lol2.10387
Daniel Koestner, Robert Foster, Ahmed El-Habashi, Shea Cheatham
{"title":"测量微塑料水悬浮液的固有光学特性","authors":"Daniel Koestner,&nbsp;Robert Foster,&nbsp;Ahmed El-Habashi,&nbsp;Shea Cheatham","doi":"10.1002/lol2.10387","DOIUrl":null,"url":null,"abstract":"<p>Libraries of inherent optical properties (IOPs) of microplastics are sparse, yet they are essential for the development of optical techniques to detect and quantify microplastics in the ocean. In this study, we describe our results and technique for the measurement of the IOPs of microplastic suspensions generated from commonly utilized plastics. The measurements included angle-resolved polarized light scattering, and spectral absorption and beam attenuation coefficients. We also performed ancillary characterization of particle properties, including size distribution, shape, and mass concentration of suspended matter. We observed several unique optical characteristics regarding absorption, scattering, and polarization properties compared with typical marine particle assemblages. We show that these results are useful for radiative transfer simulations as well as the potential development of novel plastic detection techniques from above- or in-water optical measurements.</p>","PeriodicalId":18128,"journal":{"name":"Limnology and Oceanography Letters","volume":"9 4","pages":"487-497"},"PeriodicalIF":5.1000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/lol2.10387","citationCount":"0","resultStr":"{\"title\":\"Measurements of the inherent optical properties of aqueous suspensions of microplastics\",\"authors\":\"Daniel Koestner,&nbsp;Robert Foster,&nbsp;Ahmed El-Habashi,&nbsp;Shea Cheatham\",\"doi\":\"10.1002/lol2.10387\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Libraries of inherent optical properties (IOPs) of microplastics are sparse, yet they are essential for the development of optical techniques to detect and quantify microplastics in the ocean. In this study, we describe our results and technique for the measurement of the IOPs of microplastic suspensions generated from commonly utilized plastics. The measurements included angle-resolved polarized light scattering, and spectral absorption and beam attenuation coefficients. We also performed ancillary characterization of particle properties, including size distribution, shape, and mass concentration of suspended matter. We observed several unique optical characteristics regarding absorption, scattering, and polarization properties compared with typical marine particle assemblages. We show that these results are useful for radiative transfer simulations as well as the potential development of novel plastic detection techniques from above- or in-water optical measurements.</p>\",\"PeriodicalId\":18128,\"journal\":{\"name\":\"Limnology and Oceanography Letters\",\"volume\":\"9 4\",\"pages\":\"487-497\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/lol2.10387\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Limnology and Oceanography Letters\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/lol2.10387\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"LIMNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Limnology and Oceanography Letters","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/lol2.10387","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"LIMNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

有关微塑料固有光学特性(IOPs)的资料库非常稀少,但它们对开发用于检测和量化海洋中微塑料的光学技术至关重要。在本研究中,我们介绍了测量由常用塑料生成的微塑料悬浮液的 IOPs 的结果和技术。测量包括角度分辨偏振光散射、光谱吸收和光束衰减系数。我们还对颗粒特性进行了辅助表征,包括悬浮物质的粒度分布、形状和质量浓度。与典型的海洋颗粒组合相比,我们在吸收、散射和偏振特性方面观察到了一些独特的光学特征。我们的研究表明,这些结果不仅有助于辐射传递模拟,还有助于通过水上或水中光学测量开发新型塑料检测技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Measurements of the inherent optical properties of aqueous suspensions of microplastics

Libraries of inherent optical properties (IOPs) of microplastics are sparse, yet they are essential for the development of optical techniques to detect and quantify microplastics in the ocean. In this study, we describe our results and technique for the measurement of the IOPs of microplastic suspensions generated from commonly utilized plastics. The measurements included angle-resolved polarized light scattering, and spectral absorption and beam attenuation coefficients. We also performed ancillary characterization of particle properties, including size distribution, shape, and mass concentration of suspended matter. We observed several unique optical characteristics regarding absorption, scattering, and polarization properties compared with typical marine particle assemblages. We show that these results are useful for radiative transfer simulations as well as the potential development of novel plastic detection techniques from above- or in-water optical measurements.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.00
自引率
3.80%
发文量
63
审稿时长
25 weeks
期刊介绍: Limnology and Oceanography Letters (LO-Letters) serves as a platform for communicating the latest innovative and trend-setting research in the aquatic sciences. Manuscripts submitted to LO-Letters are expected to present high-impact, cutting-edge results, discoveries, or conceptual developments across all areas of limnology and oceanography, including their integration. Selection criteria for manuscripts include their broad relevance to the field, strong empirical and conceptual foundations, succinct and elegant conclusions, and potential to advance knowledge in aquatic sciences.
期刊最新文献
Issue Information Capitalizing on the wealth of chemical data in the accretionary structures of aquatic taxa: Opportunities from across the tree of life The Great Lakes Winter Grab: Limnological data from a multi‐institutional winter sampling campaign on the Laurentian Great Lakes Disentangling effects of droughts and heatwaves on alpine periphyton communities: A mesocosm experiment Snow removal cools a small dystrophic lake
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1