纳米分辨观测纳米粒子配体界面的电化学微环境形成

IF 42.8 1区 化学 Q1 CHEMISTRY, PHYSICAL Nature Catalysis Pub Date : 2024-03-25 DOI:10.1038/s41929-024-01119-2
Yu Shan, Xiao Zhao, Maria Fonseca Guzman, Asmita Jana, Shouping Chen, Sunmoon Yu, Ka Chon Ng, Inwhan Roh, Hao Chen, Virginia Altoe, Stephanie N. Gilbert Corder, Hans A. Bechtel, Jin Qian, Miquel B. Salmeron, Peidong Yang
{"title":"纳米分辨观测纳米粒子配体界面的电化学微环境形成","authors":"Yu Shan, Xiao Zhao, Maria Fonseca Guzman, Asmita Jana, Shouping Chen, Sunmoon Yu, Ka Chon Ng, Inwhan Roh, Hao Chen, Virginia Altoe, Stephanie N. Gilbert Corder, Hans A. Bechtel, Jin Qian, Miquel B. Salmeron, Peidong Yang","doi":"10.1038/s41929-024-01119-2","DOIUrl":null,"url":null,"abstract":"The dynamic response of surface ligands on nanoparticles (NPs) to external stimuli critically determines the functionality of NP–ligand systems. For example, in electrocatalysis the collective dissociation of ligands on NP surfaces can lead to the creation of an NP/ordered-ligand interlayer, a microenvironment that is highly active and selective for CO2-to-CO conversion. However, the lack of in situ characterization techniques with high spatial resolution hampers a comprehensive molecular-level understanding of the mechanism of interlayer formation. Here we utilize in situ infrared nanospectroscopy and surface-enhanced Raman spectroscopy, unveiling an electrochemical bias-induced consecutive bond cleavage mechanism of surface ligands leading to formation of the NP/ordered-ligand interlayer. This real-time molecular insight could influence the design of confined localized fields in multiple catalytic systems. Moreover, the demonstrated capability of capturing nanometre-resolved, dynamic molecular-scale events holds promise for the advancement of using controlled local molecular behaviour to achieve desired functionalities across multiple research domains in nanoscience. Nanoparticles are often stabilized by capping ligands but the specific role of such ligands during catalytic processes is often ignored. Now, in situ techniques including spatially resolved infrared nanospectroscopy reveal the ligand-assisted formation of a catalytic microenvironment on the surface of silver nanoparticles with nanoscale precision during CO2 electroreduction.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":null,"pages":null},"PeriodicalIF":42.8000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanometre-resolved observation of electrochemical microenvironment formation at the nanoparticle–ligand interface\",\"authors\":\"Yu Shan, Xiao Zhao, Maria Fonseca Guzman, Asmita Jana, Shouping Chen, Sunmoon Yu, Ka Chon Ng, Inwhan Roh, Hao Chen, Virginia Altoe, Stephanie N. Gilbert Corder, Hans A. Bechtel, Jin Qian, Miquel B. Salmeron, Peidong Yang\",\"doi\":\"10.1038/s41929-024-01119-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The dynamic response of surface ligands on nanoparticles (NPs) to external stimuli critically determines the functionality of NP–ligand systems. For example, in electrocatalysis the collective dissociation of ligands on NP surfaces can lead to the creation of an NP/ordered-ligand interlayer, a microenvironment that is highly active and selective for CO2-to-CO conversion. However, the lack of in situ characterization techniques with high spatial resolution hampers a comprehensive molecular-level understanding of the mechanism of interlayer formation. Here we utilize in situ infrared nanospectroscopy and surface-enhanced Raman spectroscopy, unveiling an electrochemical bias-induced consecutive bond cleavage mechanism of surface ligands leading to formation of the NP/ordered-ligand interlayer. This real-time molecular insight could influence the design of confined localized fields in multiple catalytic systems. Moreover, the demonstrated capability of capturing nanometre-resolved, dynamic molecular-scale events holds promise for the advancement of using controlled local molecular behaviour to achieve desired functionalities across multiple research domains in nanoscience. Nanoparticles are often stabilized by capping ligands but the specific role of such ligands during catalytic processes is often ignored. Now, in situ techniques including spatially resolved infrared nanospectroscopy reveal the ligand-assisted formation of a catalytic microenvironment on the surface of silver nanoparticles with nanoscale precision during CO2 electroreduction.\",\"PeriodicalId\":18845,\"journal\":{\"name\":\"Nature Catalysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":42.8000,\"publicationDate\":\"2024-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Catalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.nature.com/articles/s41929-024-01119-2\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.nature.com/articles/s41929-024-01119-2","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

纳米粒子(NPs)表面配体对外界刺激的动态反应决定了 NP-配体系统的功能。例如,在电催化过程中,NP 表面配体的集体解离可导致 NP/配体间层的产生,这种微环境对 CO2 到 CO 的转化具有高度活性和选择性。然而,由于缺乏高空间分辨率的原位表征技术,阻碍了对夹层形成机理的分子层面的全面了解。在这里,我们利用原位红外纳米光谱学和表面增强拉曼光谱,揭示了电化学偏压诱导的表面配体连续键裂解机制,从而导致 NP/被缚配体夹层的形成。这种实时的分子洞察力可影响多种催化系统中封闭局部场的设计。此外,所展示的捕捉纳米分辨动态分子尺度事件的能力为利用受控局部分子行为实现纳米科学多个研究领域所需的功能带来了希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nanometre-resolved observation of electrochemical microenvironment formation at the nanoparticle–ligand interface
The dynamic response of surface ligands on nanoparticles (NPs) to external stimuli critically determines the functionality of NP–ligand systems. For example, in electrocatalysis the collective dissociation of ligands on NP surfaces can lead to the creation of an NP/ordered-ligand interlayer, a microenvironment that is highly active and selective for CO2-to-CO conversion. However, the lack of in situ characterization techniques with high spatial resolution hampers a comprehensive molecular-level understanding of the mechanism of interlayer formation. Here we utilize in situ infrared nanospectroscopy and surface-enhanced Raman spectroscopy, unveiling an electrochemical bias-induced consecutive bond cleavage mechanism of surface ligands leading to formation of the NP/ordered-ligand interlayer. This real-time molecular insight could influence the design of confined localized fields in multiple catalytic systems. Moreover, the demonstrated capability of capturing nanometre-resolved, dynamic molecular-scale events holds promise for the advancement of using controlled local molecular behaviour to achieve desired functionalities across multiple research domains in nanoscience. Nanoparticles are often stabilized by capping ligands but the specific role of such ligands during catalytic processes is often ignored. Now, in situ techniques including spatially resolved infrared nanospectroscopy reveal the ligand-assisted formation of a catalytic microenvironment on the surface of silver nanoparticles with nanoscale precision during CO2 electroreduction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Catalysis
Nature Catalysis Chemical Engineering-Bioengineering
CiteScore
52.10
自引率
1.10%
发文量
140
期刊介绍: Nature Catalysis serves as a platform for researchers across chemistry and related fields, focusing on homogeneous catalysis, heterogeneous catalysis, and biocatalysts, encompassing both fundamental and applied studies. With a particular emphasis on advancing sustainable industries and processes, the journal provides comprehensive coverage of catalysis research, appealing to scientists, engineers, and researchers in academia and industry. Maintaining the high standards of the Nature brand, Nature Catalysis boasts a dedicated team of professional editors, rigorous peer-review processes, and swift publication times, ensuring editorial independence and quality. The journal publishes work spanning heterogeneous catalysis, homogeneous catalysis, and biocatalysis, covering areas such as catalytic synthesis, mechanisms, characterization, computational studies, nanoparticle catalysis, electrocatalysis, photocatalysis, environmental catalysis, asymmetric catalysis, and various forms of organocatalysis.
期刊最新文献
Eliminating redox-mediated electron transfer mechanisms on a supported molecular catalyst enables CO2 conversion to ethanol Enantioselective Chan–Lam S-arylation of sulfenamides The structural basis of pyridoxal-5′-phosphate-dependent β-NAD-alkylating enzymes Generative machine learning produces kinetic models that accurately characterize intracellular metabolic states Understanding the interplay between electrocatalytic C(sp3)‒C(sp3) fragmentation and oxygenation reactions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1