利用合成数据训练和波形解卷积在剪切波分裂分析中进行深度学习的可行性

Megha Chakraborty, G. Rümpker, Wei Li, J. Faber, Nishtha Srivastava, F. Link
{"title":"利用合成数据训练和波形解卷积在剪切波分裂分析中进行深度学习的可行性","authors":"Megha Chakraborty, G. Rümpker, Wei Li, J. Faber, Nishtha Srivastava, F. Link","doi":"10.26443/seismica.v3i1.1124","DOIUrl":null,"url":null,"abstract":"Teleseismic shear-wave splitting analyses are often performed by reversing the splitting process through the application of frequency- or time-domain operations aimed at minimizing the transverse-component energy of waveforms. These operations yield two splitting parameters, ɸ (fast-axis orientation) and δt (delay time). In this study, we investigate the applicability of a baseline recurrent neural network, SWSNet, for determining the splitting parameters from pre-selected waveform windows. Due to the scarcity of sufficiently labelled real waveform data, we generate our own synthetic dataset to train the model. The model is capable of determining ɸ and δt with a root mean squared error (RMSE) of 9.7° and 0.14 s on a noisy synthetic test data. The application to real data involves a deconvolution step to homogenize the waveforms. When applied to data from the USArray dataset, the results exhibit similar patterns to those found in previous studies with mean absolute differences of 9.6° and 0.16 s in the calculation of ɸ and δt respectively.","PeriodicalId":498743,"journal":{"name":"Seismica","volume":" 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feasibility of Deep Learning in Shear Wave Splitting analysis using Synthetic-Data Training and Waveform Deconvolution\",\"authors\":\"Megha Chakraborty, G. Rümpker, Wei Li, J. Faber, Nishtha Srivastava, F. Link\",\"doi\":\"10.26443/seismica.v3i1.1124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Teleseismic shear-wave splitting analyses are often performed by reversing the splitting process through the application of frequency- or time-domain operations aimed at minimizing the transverse-component energy of waveforms. These operations yield two splitting parameters, ɸ (fast-axis orientation) and δt (delay time). In this study, we investigate the applicability of a baseline recurrent neural network, SWSNet, for determining the splitting parameters from pre-selected waveform windows. Due to the scarcity of sufficiently labelled real waveform data, we generate our own synthetic dataset to train the model. The model is capable of determining ɸ and δt with a root mean squared error (RMSE) of 9.7° and 0.14 s on a noisy synthetic test data. The application to real data involves a deconvolution step to homogenize the waveforms. When applied to data from the USArray dataset, the results exhibit similar patterns to those found in previous studies with mean absolute differences of 9.6° and 0.16 s in the calculation of ɸ and δt respectively.\",\"PeriodicalId\":498743,\"journal\":{\"name\":\"Seismica\",\"volume\":\" 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Seismica\",\"FirstCategoryId\":\"0\",\"ListUrlMain\":\"https://doi.org/10.26443/seismica.v3i1.1124\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seismica","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.26443/seismica.v3i1.1124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

远震剪切波分裂分析通常是通过应用频域或时域运算来逆转分裂过程,目的是尽量减少波形的横向分量能量。这些操作会产生两个分裂参数,即 ɸ(快轴方向)和 δt(延迟时间)。在本研究中,我们对基线递归神经网络 SWSNet 的适用性进行了研究,以确定预选波形窗口的分割参数。由于缺乏足够标注的真实波形数据,我们生成了自己的合成数据集来训练模型。在有噪声的合成测试数据上,该模型能够以 9.7° 和 0.14 秒的均方根误差(RMSE)确定 ɸ 和 δt。对真实数据的应用包括去卷积步骤,以均匀波形。当应用到美国阵列数据集的数据时,结果显示出与先前研究发现的相似模式,在计算 ɸ 和 δt 时的平均绝对差值分别为 9.6°和 0.16 秒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Feasibility of Deep Learning in Shear Wave Splitting analysis using Synthetic-Data Training and Waveform Deconvolution
Teleseismic shear-wave splitting analyses are often performed by reversing the splitting process through the application of frequency- or time-domain operations aimed at minimizing the transverse-component energy of waveforms. These operations yield two splitting parameters, ɸ (fast-axis orientation) and δt (delay time). In this study, we investigate the applicability of a baseline recurrent neural network, SWSNet, for determining the splitting parameters from pre-selected waveform windows. Due to the scarcity of sufficiently labelled real waveform data, we generate our own synthetic dataset to train the model. The model is capable of determining ɸ and δt with a root mean squared error (RMSE) of 9.7° and 0.14 s on a noisy synthetic test data. The application to real data involves a deconvolution step to homogenize the waveforms. When applied to data from the USArray dataset, the results exhibit similar patterns to those found in previous studies with mean absolute differences of 9.6° and 0.16 s in the calculation of ɸ and δt respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Investigation of suspected Holocene fault scarp near Montréal, Québec: The first paleoseismic trench in eastern Canada Statistical distribution of static stress resolved onto geometrically-rough faults An exploration of potentially reversible controls on millennial-scale variations in the slip rate of seismogenic faults: Linking structural observations with variable earthquake recurrence patterns Earthquake source inversion by integrated fiber-optic sensing Curated Regional Earthquake Waveforms (CREW) Dataset
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1