人工智能和机器学习在水网络安全中作用的理论框架:非洲和美国应用的启示

Fatai Adeshina Adelani, Enyinaya Stefano Okafor, Boma Sonimiteim Jacks, Olakunle Abayomi Ajala
{"title":"人工智能和机器学习在水网络安全中作用的理论框架:非洲和美国应用的启示","authors":"Fatai Adeshina Adelani, Enyinaya Stefano Okafor, Boma Sonimiteim Jacks, Olakunle Abayomi Ajala","doi":"10.51594/csitrj.v5i3.928","DOIUrl":null,"url":null,"abstract":"This review paper explores the theoretical frameworks underpinning the application of Artificial Intelligence (AI) and Machine Learning (ML) in enhancing cybersecurity within the water sector, with a focus on both African and U.S. contexts. It delves into the unique cybersecurity challenges faced by the water sector, emphasizing the critical role of AI and ML in identifying, predicting, and mitigating cyber threats. The paper discusses the ethical considerations and regulatory frameworks influencing the deployment of these technologies alongside the technical, socioeconomic, and data privacy challenges encountered. Future directions and emerging trends in AI and ML that could impact water cybersecurity are examined, offering insights into potential research areas and strategies for overcoming existing barriers. This comprehensive review underscores the importance of integrating AI and ML into water cybersecurity strategies to safeguard critical water infrastructure. \nKeywords: Artificial Intelligence, Machine Learning, Water Cybersecurity, Ethical Considerations, Regulatory Frameworks, Emerging Trends.","PeriodicalId":282796,"journal":{"name":"Computer Science & IT Research Journal","volume":" 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"THEORETICAL FRAMEWORKS FOR THE ROLE OF AI AND MACHINE LEARNING IN WATER CYBERSECURITY: INSIGHTS FROM AFRICAN AND U.S. APPLICATIONS\",\"authors\":\"Fatai Adeshina Adelani, Enyinaya Stefano Okafor, Boma Sonimiteim Jacks, Olakunle Abayomi Ajala\",\"doi\":\"10.51594/csitrj.v5i3.928\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This review paper explores the theoretical frameworks underpinning the application of Artificial Intelligence (AI) and Machine Learning (ML) in enhancing cybersecurity within the water sector, with a focus on both African and U.S. contexts. It delves into the unique cybersecurity challenges faced by the water sector, emphasizing the critical role of AI and ML in identifying, predicting, and mitigating cyber threats. The paper discusses the ethical considerations and regulatory frameworks influencing the deployment of these technologies alongside the technical, socioeconomic, and data privacy challenges encountered. Future directions and emerging trends in AI and ML that could impact water cybersecurity are examined, offering insights into potential research areas and strategies for overcoming existing barriers. This comprehensive review underscores the importance of integrating AI and ML into water cybersecurity strategies to safeguard critical water infrastructure. \\nKeywords: Artificial Intelligence, Machine Learning, Water Cybersecurity, Ethical Considerations, Regulatory Frameworks, Emerging Trends.\",\"PeriodicalId\":282796,\"journal\":{\"name\":\"Computer Science & IT Research Journal\",\"volume\":\" 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Science & IT Research Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.51594/csitrj.v5i3.928\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Science & IT Research Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51594/csitrj.v5i3.928","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本综述论文探讨了应用人工智能(AI)和机器学习(ML)加强水行业网络安全的理论框架,重点关注非洲和美国的情况。论文深入探讨了水行业面临的独特网络安全挑战,强调了人工智能和 ML 在识别、预测和减轻网络威胁方面的关键作用。本文讨论了影响这些技术部署的伦理考虑因素和监管框架,以及遇到的技术、社会经济和数据隐私挑战。本文探讨了可能影响水网络安全的人工智能和智能语言的未来方向和新兴趋势,为潜在的研究领域和克服现有障碍的战略提供了见解。本综述强调了将人工智能和 ML 纳入水网络安全战略以保护关键水基础设施的重要性。关键词人工智能、机器学习、水网络安全、伦理考虑、监管框架、新兴趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
THEORETICAL FRAMEWORKS FOR THE ROLE OF AI AND MACHINE LEARNING IN WATER CYBERSECURITY: INSIGHTS FROM AFRICAN AND U.S. APPLICATIONS
This review paper explores the theoretical frameworks underpinning the application of Artificial Intelligence (AI) and Machine Learning (ML) in enhancing cybersecurity within the water sector, with a focus on both African and U.S. contexts. It delves into the unique cybersecurity challenges faced by the water sector, emphasizing the critical role of AI and ML in identifying, predicting, and mitigating cyber threats. The paper discusses the ethical considerations and regulatory frameworks influencing the deployment of these technologies alongside the technical, socioeconomic, and data privacy challenges encountered. Future directions and emerging trends in AI and ML that could impact water cybersecurity are examined, offering insights into potential research areas and strategies for overcoming existing barriers. This comprehensive review underscores the importance of integrating AI and ML into water cybersecurity strategies to safeguard critical water infrastructure. Keywords: Artificial Intelligence, Machine Learning, Water Cybersecurity, Ethical Considerations, Regulatory Frameworks, Emerging Trends.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Role of pandemic in driving adoption of artificial intelligence in healthcare industry Challenges and strategies in securing smart environmental applications: A comprehensive review of cybersecurity measures Advances in machine learning-driven pore pressure prediction in complex geological settings Data science's pivotal role in enhancing oil recovery methods while minimizing environmental footprints: An insightful review Machine learning software for optimizing SME social media marketing campaigns
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1