{"title":"液体传输系数分子建模新方法","authors":"V. Ya. Rudyak, E. V. Lezhnev","doi":"10.1134/S0869864323060057","DOIUrl":null,"url":null,"abstract":"<div><p>The paper presents a method of molecular modeling of fluid transport coefficients, which is an alternative to the method of molecular dynamics. The transport coefficients are determined using fluctuation-dissipation theorems. The dynamics of molecules is calculated stochastically, with intermolecular forces being set using the appropriate created database. A distribution function of intermolecular forces is constructed and a formula is obtained for its analytical approximation. The method effectiveness is demonstrated by the example of calculating the viscosity and thermal conductivity coefficients of liquid argon and benzene. The obtained data are compared with the data of experimental and molecular dynamic modeling and their good agreement is established. With the same modeling accuracy, the developed method is shown to be significantly more time-efficient compared to the molecular dynamics method.</p></div>","PeriodicalId":800,"journal":{"name":"Thermophysics and Aeromechanics","volume":"30 6","pages":"1021 - 1030"},"PeriodicalIF":0.5000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New method of molecular modeling of liquid transport coefficients\",\"authors\":\"V. Ya. Rudyak, E. V. Lezhnev\",\"doi\":\"10.1134/S0869864323060057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The paper presents a method of molecular modeling of fluid transport coefficients, which is an alternative to the method of molecular dynamics. The transport coefficients are determined using fluctuation-dissipation theorems. The dynamics of molecules is calculated stochastically, with intermolecular forces being set using the appropriate created database. A distribution function of intermolecular forces is constructed and a formula is obtained for its analytical approximation. The method effectiveness is demonstrated by the example of calculating the viscosity and thermal conductivity coefficients of liquid argon and benzene. The obtained data are compared with the data of experimental and molecular dynamic modeling and their good agreement is established. With the same modeling accuracy, the developed method is shown to be significantly more time-efficient compared to the molecular dynamics method.</p></div>\",\"PeriodicalId\":800,\"journal\":{\"name\":\"Thermophysics and Aeromechanics\",\"volume\":\"30 6\",\"pages\":\"1021 - 1030\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Thermophysics and Aeromechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0869864323060057\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermophysics and Aeromechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0869864323060057","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
New method of molecular modeling of liquid transport coefficients
The paper presents a method of molecular modeling of fluid transport coefficients, which is an alternative to the method of molecular dynamics. The transport coefficients are determined using fluctuation-dissipation theorems. The dynamics of molecules is calculated stochastically, with intermolecular forces being set using the appropriate created database. A distribution function of intermolecular forces is constructed and a formula is obtained for its analytical approximation. The method effectiveness is demonstrated by the example of calculating the viscosity and thermal conductivity coefficients of liquid argon and benzene. The obtained data are compared with the data of experimental and molecular dynamic modeling and their good agreement is established. With the same modeling accuracy, the developed method is shown to be significantly more time-efficient compared to the molecular dynamics method.
期刊介绍:
The journal Thermophysics and Aeromechanics publishes original reports, reviews, and discussions on the following topics: hydrogasdynamics, heat and mass transfer, turbulence, means and methods of aero- and thermophysical experiment, physics of low-temperature plasma, and physical and technical problems of energetics. These topics are the prior fields of investigation at the Institute of Thermophysics and the Institute of Theoretical and Applied Mechanics of the Siberian Branch of the Russian Academy of Sciences (SB RAS), which are the founders of the journal along with SB RAS. This publication promotes an exchange of information between the researchers of Russia and the international scientific community.