(ECOC 20 ) 用于无源光网络中 OTDR 诊断的 ML 方法 ̶ 事件检测和分类 ̶ ODN 分支分配的方法

IF 4 2区 计算机科学 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Journal of Optical Communications and Networking Pub Date : 2024-04-15 DOI:10.1364/JOCN.516659
Michael Straub;Johannes Reber;Tarek Saier;Robert Borkowski;Shi Li;Dmitry Khomchenko;Andre Richter;Michael Farber;Tobias Kafer;Rene Bonk
{"title":"(ECOC 20 ) 用于无源光网络中 OTDR 诊断的 ML 方法 ̶ 事件检测和分类 ̶ ODN 分支分配的方法","authors":"Michael Straub;Johannes Reber;Tarek Saier;Robert Borkowski;Shi Li;Dmitry Khomchenko;Andre Richter;Michael Farber;Tobias Kafer;Rene Bonk","doi":"10.1364/JOCN.516659","DOIUrl":null,"url":null,"abstract":"An ML-supported diagnostics concept is introduced and demonstrated to detect and classify events on OTDR traces for application on a PON optical distribution network. We can also associate events with ODN branches by using deployment data of the PON. We analyze an ensemble classifier and neural networks, the usage of synthetic OTDR-like traces, and measured data for training. In our proof-of-concept, we show a precision of 98% and recall of 95% using an ensemble classifier on measured OTDR traces and a successful mapping to ODN branches or groups of branches. For emulated data, we achieve an average precision of 70% and an average recall of 91%.","PeriodicalId":50103,"journal":{"name":"Journal of Optical Communications and Networking","volume":"16 7","pages":"C43-C50"},"PeriodicalIF":4.0000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ML approaches for OTDR diagnoses in passive optical networks—event detection and classification: ways for ODN branch assignment\",\"authors\":\"Michael Straub;Johannes Reber;Tarek Saier;Robert Borkowski;Shi Li;Dmitry Khomchenko;Andre Richter;Michael Farber;Tobias Kafer;Rene Bonk\",\"doi\":\"10.1364/JOCN.516659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An ML-supported diagnostics concept is introduced and demonstrated to detect and classify events on OTDR traces for application on a PON optical distribution network. We can also associate events with ODN branches by using deployment data of the PON. We analyze an ensemble classifier and neural networks, the usage of synthetic OTDR-like traces, and measured data for training. In our proof-of-concept, we show a precision of 98% and recall of 95% using an ensemble classifier on measured OTDR traces and a successful mapping to ODN branches or groups of branches. For emulated data, we achieve an average precision of 70% and an average recall of 91%.\",\"PeriodicalId\":50103,\"journal\":{\"name\":\"Journal of Optical Communications and Networking\",\"volume\":\"16 7\",\"pages\":\"C43-C50\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Optical Communications and Networking\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10500013/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optical Communications and Networking","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10500013/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍并演示了一种由 ML 支持的诊断概念,用于检测 PON 光分配网络中应用的 OTDR 曲线上的事件并对其进行分类。我们还可以利用 PON 的部署数据将事件与 ODN 分支联系起来。我们分析了集合分类器和神经网络、合成 OTDR 类轨迹的使用以及用于训练的测量数据。在我们的概念验证中,我们展示了在测量的 OTDR 曲线上使用集合分类器的 98% 精确度和 95% 召回率,以及与 ODN 分支或分支组的成功映射。对于仿真数据,我们实现了 70% 的平均精确度和 91% 的平均召回率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ML approaches for OTDR diagnoses in passive optical networks—event detection and classification: ways for ODN branch assignment
An ML-supported diagnostics concept is introduced and demonstrated to detect and classify events on OTDR traces for application on a PON optical distribution network. We can also associate events with ODN branches by using deployment data of the PON. We analyze an ensemble classifier and neural networks, the usage of synthetic OTDR-like traces, and measured data for training. In our proof-of-concept, we show a precision of 98% and recall of 95% using an ensemble classifier on measured OTDR traces and a successful mapping to ODN branches or groups of branches. For emulated data, we achieve an average precision of 70% and an average recall of 91%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.40
自引率
16.00%
发文量
104
审稿时长
4 months
期刊介绍: The scope of the Journal includes advances in the state-of-the-art of optical networking science, technology, and engineering. Both theoretical contributions (including new techniques, concepts, analyses, and economic studies) and practical contributions (including optical networking experiments, prototypes, and new applications) are encouraged. Subareas of interest include the architecture and design of optical networks, optical network survivability and security, software-defined optical networking, elastic optical networks, data and control plane advances, network management related innovation, and optical access networks. Enabling technologies and their applications are suitable topics only if the results are shown to directly impact optical networking beyond simple point-to-point networks.
期刊最新文献
Introduction to the Benchmarking in Optical Networks Special Issue Protocol-aware approach for mitigating radiation-induced errors in free-space optical downlinks Security enhancement for NOMA-PON with 2D cellular automata and Turing pattern cascading scramble aided fixed-point extended logistic chaotic encryption In-network stable radix sorter using many FPGAs with high-bandwidth photonics [Invited] Power-consumption analysis for different IPoWDM network architectures with ZR/ZR+ and long-haul muxponders
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1