{"title":"(ECOC 20 ) 用于无源光网络中 OTDR 诊断的 ML 方法 ̶ 事件检测和分类 ̶ ODN 分支分配的方法","authors":"Michael Straub;Johannes Reber;Tarek Saier;Robert Borkowski;Shi Li;Dmitry Khomchenko;Andre Richter;Michael Farber;Tobias Kafer;Rene Bonk","doi":"10.1364/JOCN.516659","DOIUrl":null,"url":null,"abstract":"An ML-supported diagnostics concept is introduced and demonstrated to detect and classify events on OTDR traces for application on a PON optical distribution network. We can also associate events with ODN branches by using deployment data of the PON. We analyze an ensemble classifier and neural networks, the usage of synthetic OTDR-like traces, and measured data for training. In our proof-of-concept, we show a precision of 98% and recall of 95% using an ensemble classifier on measured OTDR traces and a successful mapping to ODN branches or groups of branches. For emulated data, we achieve an average precision of 70% and an average recall of 91%.","PeriodicalId":50103,"journal":{"name":"Journal of Optical Communications and Networking","volume":"16 7","pages":"C43-C50"},"PeriodicalIF":4.0000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ML approaches for OTDR diagnoses in passive optical networks—event detection and classification: ways for ODN branch assignment\",\"authors\":\"Michael Straub;Johannes Reber;Tarek Saier;Robert Borkowski;Shi Li;Dmitry Khomchenko;Andre Richter;Michael Farber;Tobias Kafer;Rene Bonk\",\"doi\":\"10.1364/JOCN.516659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An ML-supported diagnostics concept is introduced and demonstrated to detect and classify events on OTDR traces for application on a PON optical distribution network. We can also associate events with ODN branches by using deployment data of the PON. We analyze an ensemble classifier and neural networks, the usage of synthetic OTDR-like traces, and measured data for training. In our proof-of-concept, we show a precision of 98% and recall of 95% using an ensemble classifier on measured OTDR traces and a successful mapping to ODN branches or groups of branches. For emulated data, we achieve an average precision of 70% and an average recall of 91%.\",\"PeriodicalId\":50103,\"journal\":{\"name\":\"Journal of Optical Communications and Networking\",\"volume\":\"16 7\",\"pages\":\"C43-C50\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Optical Communications and Networking\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10500013/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optical Communications and Networking","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10500013/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
ML approaches for OTDR diagnoses in passive optical networks—event detection and classification: ways for ODN branch assignment
An ML-supported diagnostics concept is introduced and demonstrated to detect and classify events on OTDR traces for application on a PON optical distribution network. We can also associate events with ODN branches by using deployment data of the PON. We analyze an ensemble classifier and neural networks, the usage of synthetic OTDR-like traces, and measured data for training. In our proof-of-concept, we show a precision of 98% and recall of 95% using an ensemble classifier on measured OTDR traces and a successful mapping to ODN branches or groups of branches. For emulated data, we achieve an average precision of 70% and an average recall of 91%.
期刊介绍:
The scope of the Journal includes advances in the state-of-the-art of optical networking science, technology, and engineering. Both theoretical contributions (including new techniques, concepts, analyses, and economic studies) and practical contributions (including optical networking experiments, prototypes, and new applications) are encouraged. Subareas of interest include the architecture and design of optical networks, optical network survivability and security, software-defined optical networking, elastic optical networks, data and control plane advances, network management related innovation, and optical access networks. Enabling technologies and their applications are suitable topics only if the results are shown to directly impact optical networking beyond simple point-to-point networks.