{"title":"晶体中的电磁波:异常点的存在","authors":"Chris Sturm","doi":"10.1002/adpr.202300235","DOIUrl":null,"url":null,"abstract":"<p>Although the investigation of the propagation of electromagnetic waves in crystals dates back to the 19th century, the presence of singular optic axes in optically anisotropic materials has not been fully explored until now. Along such an axis, either a left or a right circular polarized wave can propagate without changing its polarization state. More generally, these singular optic axes belong to exceptional points (EPs) in the momentum space and correspond to a simultaneous degeneration of the eigenmodes and their propagation properties. Herein, a comprehensive discussion on EPs in optically anisotropic materials, their occurrence, and properties as well as the properties of the electromagnetic waves propagating along such EPs is presented. The presence of such EPs, their spatial and spectral distribution in bulk, and semi-infinite and finite crystals are discussed. It is shown that the presence of interfaces has a strong impact on the presence of the EPs and their spatial distribution. At an EP, the propagation of an arbitrarily polarized wave cannot be described by a superposition of two eigenmodes, as typically described in textbooks. This leads to singularities if the reflection and transmission coefficients have to be calculated. Here, two approaches are presented to overcome these limitations.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":"5 4","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202300235","citationCount":"0","resultStr":"{\"title\":\"Electromagnetic Waves in Crystals: The Presence of Exceptional Points\",\"authors\":\"Chris Sturm\",\"doi\":\"10.1002/adpr.202300235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Although the investigation of the propagation of electromagnetic waves in crystals dates back to the 19th century, the presence of singular optic axes in optically anisotropic materials has not been fully explored until now. Along such an axis, either a left or a right circular polarized wave can propagate without changing its polarization state. More generally, these singular optic axes belong to exceptional points (EPs) in the momentum space and correspond to a simultaneous degeneration of the eigenmodes and their propagation properties. Herein, a comprehensive discussion on EPs in optically anisotropic materials, their occurrence, and properties as well as the properties of the electromagnetic waves propagating along such EPs is presented. The presence of such EPs, their spatial and spectral distribution in bulk, and semi-infinite and finite crystals are discussed. It is shown that the presence of interfaces has a strong impact on the presence of the EPs and their spatial distribution. At an EP, the propagation of an arbitrarily polarized wave cannot be described by a superposition of two eigenmodes, as typically described in textbooks. This leads to singularities if the reflection and transmission coefficients have to be calculated. Here, two approaches are presented to overcome these limitations.</p>\",\"PeriodicalId\":7263,\"journal\":{\"name\":\"Advanced Photonics Research\",\"volume\":\"5 4\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202300235\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Photonics Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adpr.202300235\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Photonics Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adpr.202300235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
尽管对电磁波在晶体中传播的研究可以追溯到 19 世纪,但对光学各向异性材料中存在的奇异光轴的研究至今仍未全面展开。沿着这样的轴线,左旋或右旋圆极化波可以在不改变其极化状态的情况下传播。一般来说,这些奇异的光轴属于动量空间中的异常点(EP),同时对应于特征模式及其传播特性的退化。本文全面讨论了光学各向异性材料中的例外点、例外点的出现、例外点的特性以及沿例外点传播的电磁波的特性。本文讨论了这种 EP 的存在,以及它们在块体、半无限和有限晶体中的空间和光谱分布。研究表明,界面的存在对 EP 的存在及其空间分布有很大影响。在 EP 处,任意极化波的传播不能用教科书中通常描述的两个特征模的叠加来描述。如果要计算反射和透射系数,就会出现奇异现象。这里介绍两种克服这些限制的方法。
Electromagnetic Waves in Crystals: The Presence of Exceptional Points
Although the investigation of the propagation of electromagnetic waves in crystals dates back to the 19th century, the presence of singular optic axes in optically anisotropic materials has not been fully explored until now. Along such an axis, either a left or a right circular polarized wave can propagate without changing its polarization state. More generally, these singular optic axes belong to exceptional points (EPs) in the momentum space and correspond to a simultaneous degeneration of the eigenmodes and their propagation properties. Herein, a comprehensive discussion on EPs in optically anisotropic materials, their occurrence, and properties as well as the properties of the electromagnetic waves propagating along such EPs is presented. The presence of such EPs, their spatial and spectral distribution in bulk, and semi-infinite and finite crystals are discussed. It is shown that the presence of interfaces has a strong impact on the presence of the EPs and their spatial distribution. At an EP, the propagation of an arbitrarily polarized wave cannot be described by a superposition of two eigenmodes, as typically described in textbooks. This leads to singularities if the reflection and transmission coefficients have to be calculated. Here, two approaches are presented to overcome these limitations.