监测生活用水量:基于模型和数据的最终用途分类方法比较研究

Pavlos Vryoni Pavlou, S. Filippou, Solon Solonos, Stelios G. Vrachimis, Kleanthis Malialis, Demetrios G. Eliades, Theocharis Theocarides, Marios M. Polycarpou
{"title":"监测生活用水量:基于模型和数据的最终用途分类方法比较研究","authors":"Pavlos Vryoni Pavlou, S. Filippou, Solon Solonos, Stelios G. Vrachimis, Kleanthis Malialis, Demetrios G. Eliades, Theocharis Theocarides, Marios M. Polycarpou","doi":"10.2166/hydro.2024.120","DOIUrl":null,"url":null,"abstract":"\n Monitoring the water usage of different appliances and informing consumers about it has been shown to have an impact on their behavior toward drinking water conservation. The most practical and cost-effective way to accomplish this is through a non-intrusive approach, that locally analyzes data received from a flow sensor at the main water supply pipe of a household. In this work, we present two different methods addressing the challenges of disaggregating end-use consumption and classifying consumption events. The first method is model-based (MB) and uses a combination of dynamic time wrapping and statistical bounds to analyze four water end-use characteristics. The second, learning-based (LB) method is data-driven and formulates the problem as a time-series classification problem without relying on a priori identification of events. We perform an extensive computational study that includes a comparison between an MB and an LB method, as well as an experimental study to demonstrate the application of the LB method on an edge computing device. Both methods achieve similar F1 scores (LB: 71.73%, MB: 71.04%) with the LB being more precise. The embedded LB method achieves a slightly higher score (72.01%) while enhancing on-site real-time processing, improving security, and privacy and enabling cost savings.","PeriodicalId":507813,"journal":{"name":"Journal of Hydroinformatics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monitoring domestic water consumption: a comparative study of model-based and data-driven end-use disaggregation methods\",\"authors\":\"Pavlos Vryoni Pavlou, S. Filippou, Solon Solonos, Stelios G. Vrachimis, Kleanthis Malialis, Demetrios G. Eliades, Theocharis Theocarides, Marios M. Polycarpou\",\"doi\":\"10.2166/hydro.2024.120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Monitoring the water usage of different appliances and informing consumers about it has been shown to have an impact on their behavior toward drinking water conservation. The most practical and cost-effective way to accomplish this is through a non-intrusive approach, that locally analyzes data received from a flow sensor at the main water supply pipe of a household. In this work, we present two different methods addressing the challenges of disaggregating end-use consumption and classifying consumption events. The first method is model-based (MB) and uses a combination of dynamic time wrapping and statistical bounds to analyze four water end-use characteristics. The second, learning-based (LB) method is data-driven and formulates the problem as a time-series classification problem without relying on a priori identification of events. We perform an extensive computational study that includes a comparison between an MB and an LB method, as well as an experimental study to demonstrate the application of the LB method on an edge computing device. Both methods achieve similar F1 scores (LB: 71.73%, MB: 71.04%) with the LB being more precise. The embedded LB method achieves a slightly higher score (72.01%) while enhancing on-site real-time processing, improving security, and privacy and enabling cost savings.\",\"PeriodicalId\":507813,\"journal\":{\"name\":\"Journal of Hydroinformatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydroinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2166/hydro.2024.120\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydroinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/hydro.2024.120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

事实证明,监测不同器具的用水量并告知消费者,会对他们节约饮用水的行为产生影响。实现这一目标的最实用、最具成本效益的方法是采用非侵入式方法,对家庭主供水管上的流量传感器接收到的数据进行本地分析。在这项工作中,我们提出了两种不同的方法来应对终端用水量分解和用水事件分类的挑战。第一种方法基于模型(MB),结合使用动态时间包装和统计边界来分析四种水的终端使用特征。第二种方法是基于学习(LB)的方法,以数据为驱动,将问题表述为时间序列分类问题,而不依赖于事件的先验识别。我们进行了广泛的计算研究,包括 MB 方法和 LB 方法的比较,以及在边缘计算设备上应用 LB 方法的实验研究。两种方法都获得了相似的 F1 分数(LB:71.73%,MB:71.04%),其中 LB 更为精确。嵌入式 LB 方法得分略高(72.01%),同时增强了现场实时处理能力,提高了安全性和隐私性,并节省了成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Monitoring domestic water consumption: a comparative study of model-based and data-driven end-use disaggregation methods
Monitoring the water usage of different appliances and informing consumers about it has been shown to have an impact on their behavior toward drinking water conservation. The most practical and cost-effective way to accomplish this is through a non-intrusive approach, that locally analyzes data received from a flow sensor at the main water supply pipe of a household. In this work, we present two different methods addressing the challenges of disaggregating end-use consumption and classifying consumption events. The first method is model-based (MB) and uses a combination of dynamic time wrapping and statistical bounds to analyze four water end-use characteristics. The second, learning-based (LB) method is data-driven and formulates the problem as a time-series classification problem without relying on a priori identification of events. We perform an extensive computational study that includes a comparison between an MB and an LB method, as well as an experimental study to demonstrate the application of the LB method on an edge computing device. Both methods achieve similar F1 scores (LB: 71.73%, MB: 71.04%) with the LB being more precise. The embedded LB method achieves a slightly higher score (72.01%) while enhancing on-site real-time processing, improving security, and privacy and enabling cost savings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predicting total upland sediment yield using regression and machine learning models for improved land management and water conservation An integrated cyberinfrastructure system for water quality resources in the Upper Mississippi River Basin A novel application of waveform matching algorithm for improving monthly runoff forecasting using wavelet–ML models Sensitivity of creep parameters to pressure fluctuation of transient flow in viscoelastic pipes Impacts of emergent rigid vegetation patches on flow characteristics of open channels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1