RIS 辅助环境反向散射通信网络的保密性能分析

IF 5.3 2区 计算机科学 Q1 TELECOMMUNICATIONS IEEE Transactions on Green Communications and Networking Pub Date : 2024-02-13 DOI:10.1109/TGCN.2024.3365692
Yingjie Pei;Xinwei Yue;Chongwen Huang;Zhiping Lu
{"title":"RIS 辅助环境反向散射通信网络的保密性能分析","authors":"Yingjie Pei;Xinwei Yue;Chongwen Huang;Zhiping Lu","doi":"10.1109/TGCN.2024.3365692","DOIUrl":null,"url":null,"abstract":"Reconfigurable intelligent surface (RIS) and ambient backscatter communication (AmBC) have been envisioned as two promising technologies due to their high transmission reliability as well as energy-efficiency. This paper investigates the secrecy performance of RIS assisted AmBC networks. New closed-form and asymptotic expressions of secrecy outage probability for RIS-AmBC networks are derived by taking into account both imperfect successive interference cancellation (ipSIC) and perfect SIC (pSIC) cases. On top of these, the secrecy diversity order of legitimate user is obtained in high signal-to-noise ratio region, which equals zero and is proportional to the number of RIS elements for ipSIC and pSIC, respectively. The secrecy throughput and energy efficiency are further surveyed to evaluate the secure effectiveness of RIS-AmBC networks. Numerical results are provided to verify the accuracy of theoretical analyses and manifest that: i) The secrecy outage behavior of RIS-AmBC networks exceeds that of conventional AmBC networks; ii) Due to the mutual interference between direct and backscattering links, the number of RIS elements has an optimal value to minimise the secrecy system outage probability; and iii) Secrecy throughput and energy efficiency are strongly influenced by the reflecting coefficient and eavesdropper’s wiretapping ability.","PeriodicalId":13052,"journal":{"name":"IEEE Transactions on Green Communications and Networking","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Secrecy Performance Analysis of RIS Assisted Ambient Backscatter Communication Networks\",\"authors\":\"Yingjie Pei;Xinwei Yue;Chongwen Huang;Zhiping Lu\",\"doi\":\"10.1109/TGCN.2024.3365692\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reconfigurable intelligent surface (RIS) and ambient backscatter communication (AmBC) have been envisioned as two promising technologies due to their high transmission reliability as well as energy-efficiency. This paper investigates the secrecy performance of RIS assisted AmBC networks. New closed-form and asymptotic expressions of secrecy outage probability for RIS-AmBC networks are derived by taking into account both imperfect successive interference cancellation (ipSIC) and perfect SIC (pSIC) cases. On top of these, the secrecy diversity order of legitimate user is obtained in high signal-to-noise ratio region, which equals zero and is proportional to the number of RIS elements for ipSIC and pSIC, respectively. The secrecy throughput and energy efficiency are further surveyed to evaluate the secure effectiveness of RIS-AmBC networks. Numerical results are provided to verify the accuracy of theoretical analyses and manifest that: i) The secrecy outage behavior of RIS-AmBC networks exceeds that of conventional AmBC networks; ii) Due to the mutual interference between direct and backscattering links, the number of RIS elements has an optimal value to minimise the secrecy system outage probability; and iii) Secrecy throughput and energy efficiency are strongly influenced by the reflecting coefficient and eavesdropper’s wiretapping ability.\",\"PeriodicalId\":13052,\"journal\":{\"name\":\"IEEE Transactions on Green Communications and Networking\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Green Communications and Networking\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10433724/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Green Communications and Networking","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10433724/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

可重构智能表面(RIS)和环境反向散射通信(AmBC)因其高传输可靠性和高能效而被视为两种前景广阔的技术。本文研究了 RIS 辅助 AmBC 网络的保密性能。通过考虑不完美连续干扰消除(ipSIC)和完美连续干扰消除(pSIC)两种情况,推导出 RIS-AmBC 网络保密性中断概率的新闭式和渐近表达式。在此基础上,得到了高信噪比区域内合法用户的保密分集阶,在 ipSIC 和 pSIC 时,合法用户的保密分集阶分别等于 \emph{zero} 和与 RIS 元素数量成正比。为评估 RIS-AmBC 网络的安全有效性,还进一步调查了保密吞吐量和能效。提供的数值结果验证了理论分析的准确性,并表明:i) RIS-AmBC 网络的保密中断行为超过了传统 AmBC 网络;ii) 由于直接链路和反向散射链路之间的相互干扰,RIS 元素的数量有一个最佳值,以使保密系统中断概率最小;iii) 保密吞吐量和能效受反射系数和窃听者窃听能力的影响很大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Secrecy Performance Analysis of RIS Assisted Ambient Backscatter Communication Networks
Reconfigurable intelligent surface (RIS) and ambient backscatter communication (AmBC) have been envisioned as two promising technologies due to their high transmission reliability as well as energy-efficiency. This paper investigates the secrecy performance of RIS assisted AmBC networks. New closed-form and asymptotic expressions of secrecy outage probability for RIS-AmBC networks are derived by taking into account both imperfect successive interference cancellation (ipSIC) and perfect SIC (pSIC) cases. On top of these, the secrecy diversity order of legitimate user is obtained in high signal-to-noise ratio region, which equals zero and is proportional to the number of RIS elements for ipSIC and pSIC, respectively. The secrecy throughput and energy efficiency are further surveyed to evaluate the secure effectiveness of RIS-AmBC networks. Numerical results are provided to verify the accuracy of theoretical analyses and manifest that: i) The secrecy outage behavior of RIS-AmBC networks exceeds that of conventional AmBC networks; ii) Due to the mutual interference between direct and backscattering links, the number of RIS elements has an optimal value to minimise the secrecy system outage probability; and iii) Secrecy throughput and energy efficiency are strongly influenced by the reflecting coefficient and eavesdropper’s wiretapping ability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Green Communications and Networking
IEEE Transactions on Green Communications and Networking Computer Science-Computer Networks and Communications
CiteScore
9.30
自引率
6.20%
发文量
181
期刊最新文献
Table of Contents Guest Editorial Special Issue on Green Open Radio Access Networks: Architecture, Challenges, Opportunities, and Use Cases IEEE Transactions on Green Communications and Networking IEEE Communications Society Information HSADR: A New Highly Secure Aggregation and Dropout-Resilient Federated Learning Scheme for Radio Access Networks With Edge Computing Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1