{"title":"椭圆形底座上的圆锥形有规则贝壳","authors":"S. Krivoshapko","doi":"10.22363/1815-5235-2024-20-1-40-56","DOIUrl":null,"url":null,"abstract":"The information about main results on geometry of developable surfaces with an edge of regression which have a directrix ellipse in the base is gathered. These surfaces constitute a group called “Ruled surfaces of conical type on elliptical base”. This group includes elliptical cones, torses with two ellipses defined in the parallel planes, equal slope surfaces, and ruled surfaces with the main frame of three superellipses that are ellipses in one coordinate plane and broken straight lines in the other two coordinate planes. The paper presents a method for developing torses onto a plane, approximation of torses by folded surfaces, and parabolic ending of a thin sheet from elastic material into a torse shell. A brief review of the methods of stress-strain and buckling analysis of the considered ruled shells is given, including the displacement-based finite element method and variational energy method. It is shown that analytical methods can be used only in the case of applying the momentless shell theory for ruled thin shells of conical type. The analytical formulae for determining the normal and tangent internal forces in any momentless conic shell with a superellipse in the base are derived. References to forty four scientific articles of other authors, working or having worked on the subject of the paper are given. These references confirm the conclusions of the author and the perspectives of investigations of the considered ruled surfaces and shells.","PeriodicalId":32610,"journal":{"name":"Structural Mechanics of Engineering Constructions and Buildings","volume":"36 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ruled Shells of Conical Type on Elliptical Base\",\"authors\":\"S. Krivoshapko\",\"doi\":\"10.22363/1815-5235-2024-20-1-40-56\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The information about main results on geometry of developable surfaces with an edge of regression which have a directrix ellipse in the base is gathered. These surfaces constitute a group called “Ruled surfaces of conical type on elliptical base”. This group includes elliptical cones, torses with two ellipses defined in the parallel planes, equal slope surfaces, and ruled surfaces with the main frame of three superellipses that are ellipses in one coordinate plane and broken straight lines in the other two coordinate planes. The paper presents a method for developing torses onto a plane, approximation of torses by folded surfaces, and parabolic ending of a thin sheet from elastic material into a torse shell. A brief review of the methods of stress-strain and buckling analysis of the considered ruled shells is given, including the displacement-based finite element method and variational energy method. It is shown that analytical methods can be used only in the case of applying the momentless shell theory for ruled thin shells of conical type. The analytical formulae for determining the normal and tangent internal forces in any momentless conic shell with a superellipse in the base are derived. References to forty four scientific articles of other authors, working or having worked on the subject of the paper are given. These references confirm the conclusions of the author and the perspectives of investigations of the considered ruled surfaces and shells.\",\"PeriodicalId\":32610,\"journal\":{\"name\":\"Structural Mechanics of Engineering Constructions and Buildings\",\"volume\":\"36 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Mechanics of Engineering Constructions and Buildings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22363/1815-5235-2024-20-1-40-56\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Mechanics of Engineering Constructions and Buildings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22363/1815-5235-2024-20-1-40-56","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The information about main results on geometry of developable surfaces with an edge of regression which have a directrix ellipse in the base is gathered. These surfaces constitute a group called “Ruled surfaces of conical type on elliptical base”. This group includes elliptical cones, torses with two ellipses defined in the parallel planes, equal slope surfaces, and ruled surfaces with the main frame of three superellipses that are ellipses in one coordinate plane and broken straight lines in the other two coordinate planes. The paper presents a method for developing torses onto a plane, approximation of torses by folded surfaces, and parabolic ending of a thin sheet from elastic material into a torse shell. A brief review of the methods of stress-strain and buckling analysis of the considered ruled shells is given, including the displacement-based finite element method and variational energy method. It is shown that analytical methods can be used only in the case of applying the momentless shell theory for ruled thin shells of conical type. The analytical formulae for determining the normal and tangent internal forces in any momentless conic shell with a superellipse in the base are derived. References to forty four scientific articles of other authors, working or having worked on the subject of the paper are given. These references confirm the conclusions of the author and the perspectives of investigations of the considered ruled surfaces and shells.