Anitha Gopalan, Judy Simon, Thoti Hemalatha, V. N. Mandhala, Nalini Neelamegam, Binu Sukumar, Faten Kamel Madian
{"title":"高度非线性光纤中的单泵浦全光纤放大器(POA)与超宽带和高增益光纤参量放大器的比较研究","authors":"Anitha Gopalan, Judy Simon, Thoti Hemalatha, V. N. Mandhala, Nalini Neelamegam, Binu Sukumar, Faten Kamel Madian","doi":"10.1515/joc-2024-0022","DOIUrl":null,"url":null,"abstract":"\n This paper has clarified comparative study of single pump all optical fiber amplifiers with ultrawide band and high gain fiber optic parametric amplifiers in highly nonlinear fibers. Different amplifiers gain is demonstrated versus system distance for different light amplifiers in highly nonlinear fiber channel. As well as amplifier gain is clarified against system distance for different light amplifiers in DCF, DSF and NZDSF fiber channel. The mechanism of generation of single idler signal is studied based on single signal and pump signal. Moreover the mechanism of generation of single idler signal is analyzed and investigated clearly based on signal and two pump signals. Amplifier bandwidth is demonstrated against system distance for different fiber channel types in the presence of POA amplifiers based on 100 mW, 300 mW and 500 mW pumping power. The map of the signal losses is discussed and clarified versus wavelength band in the presence of all amplification techniques. Light signal per noise ratio and bit error rates are demonstrated against system distance for different fiber channel types in the presence of POA amplifiers based on 100 mW, 300 mW and 500 mW pumping power. POA is more suitable for the operation in HNLF fiber channel in compared to other proposed fiber communication channels. All optical amplifiers operation performance gain efficiency is compared together in different fiber channel media. The system can be employed with POAs for the fiber reach up to 100 km distance with a suitable amplifier gain and bandwidth. An important criteria for any amplifier is its gain and bandwidth for the compensation of the system loss and dispersion together. The optimum suitable pumping power is clarified for upgrade the system amplifier performance signature.","PeriodicalId":16675,"journal":{"name":"Journal of Optical Communications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative study of single pump all optical fiber amplifiers (POAs) with ultra wide band and high gain fiber optic parametric amplifiers in highly nonlinear fibers\",\"authors\":\"Anitha Gopalan, Judy Simon, Thoti Hemalatha, V. N. Mandhala, Nalini Neelamegam, Binu Sukumar, Faten Kamel Madian\",\"doi\":\"10.1515/joc-2024-0022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This paper has clarified comparative study of single pump all optical fiber amplifiers with ultrawide band and high gain fiber optic parametric amplifiers in highly nonlinear fibers. Different amplifiers gain is demonstrated versus system distance for different light amplifiers in highly nonlinear fiber channel. As well as amplifier gain is clarified against system distance for different light amplifiers in DCF, DSF and NZDSF fiber channel. The mechanism of generation of single idler signal is studied based on single signal and pump signal. Moreover the mechanism of generation of single idler signal is analyzed and investigated clearly based on signal and two pump signals. Amplifier bandwidth is demonstrated against system distance for different fiber channel types in the presence of POA amplifiers based on 100 mW, 300 mW and 500 mW pumping power. The map of the signal losses is discussed and clarified versus wavelength band in the presence of all amplification techniques. Light signal per noise ratio and bit error rates are demonstrated against system distance for different fiber channel types in the presence of POA amplifiers based on 100 mW, 300 mW and 500 mW pumping power. POA is more suitable for the operation in HNLF fiber channel in compared to other proposed fiber communication channels. All optical amplifiers operation performance gain efficiency is compared together in different fiber channel media. The system can be employed with POAs for the fiber reach up to 100 km distance with a suitable amplifier gain and bandwidth. An important criteria for any amplifier is its gain and bandwidth for the compensation of the system loss and dispersion together. The optimum suitable pumping power is clarified for upgrade the system amplifier performance signature.\",\"PeriodicalId\":16675,\"journal\":{\"name\":\"Journal of Optical Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Optical Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/joc-2024-0022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optical Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/joc-2024-0022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Comparative study of single pump all optical fiber amplifiers (POAs) with ultra wide band and high gain fiber optic parametric amplifiers in highly nonlinear fibers
This paper has clarified comparative study of single pump all optical fiber amplifiers with ultrawide band and high gain fiber optic parametric amplifiers in highly nonlinear fibers. Different amplifiers gain is demonstrated versus system distance for different light amplifiers in highly nonlinear fiber channel. As well as amplifier gain is clarified against system distance for different light amplifiers in DCF, DSF and NZDSF fiber channel. The mechanism of generation of single idler signal is studied based on single signal and pump signal. Moreover the mechanism of generation of single idler signal is analyzed and investigated clearly based on signal and two pump signals. Amplifier bandwidth is demonstrated against system distance for different fiber channel types in the presence of POA amplifiers based on 100 mW, 300 mW and 500 mW pumping power. The map of the signal losses is discussed and clarified versus wavelength band in the presence of all amplification techniques. Light signal per noise ratio and bit error rates are demonstrated against system distance for different fiber channel types in the presence of POA amplifiers based on 100 mW, 300 mW and 500 mW pumping power. POA is more suitable for the operation in HNLF fiber channel in compared to other proposed fiber communication channels. All optical amplifiers operation performance gain efficiency is compared together in different fiber channel media. The system can be employed with POAs for the fiber reach up to 100 km distance with a suitable amplifier gain and bandwidth. An important criteria for any amplifier is its gain and bandwidth for the compensation of the system loss and dispersion together. The optimum suitable pumping power is clarified for upgrade the system amplifier performance signature.
期刊介绍:
This is the journal for all scientists working in optical communications. Journal of Optical Communications was the first international publication covering all fields of optical communications with guided waves. It is the aim of the journal to serve all scientists engaged in optical communications as a comprehensive journal tailored to their needs and as a forum for their publications. The journal focuses on the main fields in optical communications