{"title":"钢平面和空间桁架系统可靠性分析概率模型","authors":"Katarzyna Kubicka","doi":"10.15632/jtam-pl/184262","DOIUrl":null,"url":null,"abstract":"The article focuses on the system reliability analysis of steel trusses (plane and spatial). The computations are realized by the use of a developed by the author C++ code. The following loads are taken into account: self-weight, weight of coverings, wind and snow. The limit state function is defined as a difference between the bearing capacity and the effect of action of an element. The paper presents how effective tool is the system reliability analysis compared with traditional structural design methods. The methods of transforming Gumbel distribution into normal and generating random variables are described.","PeriodicalId":503677,"journal":{"name":"Journal of Theoretical and Applied Mechanics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The probabilistic model for system reliability analysis of a steel plane and spatial trusses\",\"authors\":\"Katarzyna Kubicka\",\"doi\":\"10.15632/jtam-pl/184262\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The article focuses on the system reliability analysis of steel trusses (plane and spatial). The computations are realized by the use of a developed by the author C++ code. The following loads are taken into account: self-weight, weight of coverings, wind and snow. The limit state function is defined as a difference between the bearing capacity and the effect of action of an element. The paper presents how effective tool is the system reliability analysis compared with traditional structural design methods. The methods of transforming Gumbel distribution into normal and generating random variables are described.\",\"PeriodicalId\":503677,\"journal\":{\"name\":\"Journal of Theoretical and Applied Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Theoretical and Applied Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15632/jtam-pl/184262\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Theoretical and Applied Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15632/jtam-pl/184262","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
文章的重点是钢桁架(平面和空间)的系统可靠性分析。计算是通过作者开发的 C++ 代码实现的。计算中考虑了以下荷载:自重、覆盖层重量、风力和雪力。极限状态函数被定义为承载能力与元素作用效果之间的差值。与传统的结构设计方法相比,本文介绍了系统可靠性分析的有效工具。文中介绍了将 Gumbel 分布转化为正态分布和生成随机变量的方法。
The probabilistic model for system reliability analysis of a steel plane and spatial trusses
The article focuses on the system reliability analysis of steel trusses (plane and spatial). The computations are realized by the use of a developed by the author C++ code. The following loads are taken into account: self-weight, weight of coverings, wind and snow. The limit state function is defined as a difference between the bearing capacity and the effect of action of an element. The paper presents how effective tool is the system reliability analysis compared with traditional structural design methods. The methods of transforming Gumbel distribution into normal and generating random variables are described.