P. Phong, Dao Thi Thuong, Nguyen Ngoc Sang, Nguyen Trong Nghia, Nghiêm Thị Hà Liên, Nguyen Duc Toan, Vu Thi Thu Ha, Le Minh Thanh
{"title":"基于聚乙二醇二丙烯酸酯的反乳白光子晶体结构中的孔隙在结合蛋白质的光学生物传感器中的作用","authors":"P. Phong, Dao Thi Thuong, Nguyen Ngoc Sang, Nguyen Trong Nghia, Nghiêm Thị Hà Liên, Nguyen Duc Toan, Vu Thi Thu Ha, Le Minh Thanh","doi":"10.1002/vjch.202300273","DOIUrl":null,"url":null,"abstract":"Here, the role of pores in the structure of inverse opal photonic crystals (IOPC) in binding proteins in comparison with their parent photonic crystal (PC) templates has been investigated. For this purpose, polyethyleneglycol diacrylate (PEGDA) coated with SiO2‐based PC (PEGDA/SiO2‐based PC) and PEGDA‐based IOPC were attached with fluorophore Alexa 488, which is a polyclonal secondary antibody, to investigate their fluorescence emission. Scanning electron microscopy (SEM) images showed face centered cubic (fcc) packing of the PEGDA/SiO2‐based PC. And it remained after the formation of PEGDA‐based IOPC. The presence of 3‐aminopropyl triethoxysilane (APTES) and Alexa 488 that immobilized the PEGDA‐based PC and PEGDA‐based IOPC was recognized by the appearance of bands at 850, 1175, and a dominant increase in the band at 1750 cm−1. Those were attributed to (N─H) wagging, (C─N) stretching, and (C═O) stretching vibrations, respectively. Reflectance spectra showed a blue shift of the Bragg photonic band gap of the PEGDA‐based IOPC in comparison with that of the PEGDA/SiO2‐based PC. The fluorescence images showed a significant increase in the fluorescence intensity of PEGDA‐based IOPC owing to the resonance effect. These obtained results indicated the role of pores in structure of PEGDA‐based IOPC in improvement of the attachment of Alexa 488 protein.","PeriodicalId":23525,"journal":{"name":"Vietnam Journal of Chemistry","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The role of pores in structure of polyethylenglycol diacrylate based‐inverse opal photonic crystal in binding protein applicable to optical biosensor\",\"authors\":\"P. Phong, Dao Thi Thuong, Nguyen Ngoc Sang, Nguyen Trong Nghia, Nghiêm Thị Hà Liên, Nguyen Duc Toan, Vu Thi Thu Ha, Le Minh Thanh\",\"doi\":\"10.1002/vjch.202300273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Here, the role of pores in the structure of inverse opal photonic crystals (IOPC) in binding proteins in comparison with their parent photonic crystal (PC) templates has been investigated. For this purpose, polyethyleneglycol diacrylate (PEGDA) coated with SiO2‐based PC (PEGDA/SiO2‐based PC) and PEGDA‐based IOPC were attached with fluorophore Alexa 488, which is a polyclonal secondary antibody, to investigate their fluorescence emission. Scanning electron microscopy (SEM) images showed face centered cubic (fcc) packing of the PEGDA/SiO2‐based PC. And it remained after the formation of PEGDA‐based IOPC. The presence of 3‐aminopropyl triethoxysilane (APTES) and Alexa 488 that immobilized the PEGDA‐based PC and PEGDA‐based IOPC was recognized by the appearance of bands at 850, 1175, and a dominant increase in the band at 1750 cm−1. Those were attributed to (N─H) wagging, (C─N) stretching, and (C═O) stretching vibrations, respectively. Reflectance spectra showed a blue shift of the Bragg photonic band gap of the PEGDA‐based IOPC in comparison with that of the PEGDA/SiO2‐based PC. The fluorescence images showed a significant increase in the fluorescence intensity of PEGDA‐based IOPC owing to the resonance effect. These obtained results indicated the role of pores in structure of PEGDA‐based IOPC in improvement of the attachment of Alexa 488 protein.\",\"PeriodicalId\":23525,\"journal\":{\"name\":\"Vietnam Journal of Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vietnam Journal of Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/vjch.202300273\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vietnam Journal of Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/vjch.202300273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
The role of pores in structure of polyethylenglycol diacrylate based‐inverse opal photonic crystal in binding protein applicable to optical biosensor
Here, the role of pores in the structure of inverse opal photonic crystals (IOPC) in binding proteins in comparison with their parent photonic crystal (PC) templates has been investigated. For this purpose, polyethyleneglycol diacrylate (PEGDA) coated with SiO2‐based PC (PEGDA/SiO2‐based PC) and PEGDA‐based IOPC were attached with fluorophore Alexa 488, which is a polyclonal secondary antibody, to investigate their fluorescence emission. Scanning electron microscopy (SEM) images showed face centered cubic (fcc) packing of the PEGDA/SiO2‐based PC. And it remained after the formation of PEGDA‐based IOPC. The presence of 3‐aminopropyl triethoxysilane (APTES) and Alexa 488 that immobilized the PEGDA‐based PC and PEGDA‐based IOPC was recognized by the appearance of bands at 850, 1175, and a dominant increase in the band at 1750 cm−1. Those were attributed to (N─H) wagging, (C─N) stretching, and (C═O) stretching vibrations, respectively. Reflectance spectra showed a blue shift of the Bragg photonic band gap of the PEGDA‐based IOPC in comparison with that of the PEGDA/SiO2‐based PC. The fluorescence images showed a significant increase in the fluorescence intensity of PEGDA‐based IOPC owing to the resonance effect. These obtained results indicated the role of pores in structure of PEGDA‐based IOPC in improvement of the attachment of Alexa 488 protein.