利用自动机器人驱动的光电化学生物传感平台检测污水中的生物负荷

Yiming Zhang, Zhi Chen, Songrui Wei, Yujun Zhang, Hai Fu, Han Zhang, Defa Li, Zhongjian Xie
{"title":"利用自动机器人驱动的光电化学生物传感平台检测污水中的生物负荷","authors":"Yiming Zhang,&nbsp;Zhi Chen,&nbsp;Songrui Wei,&nbsp;Yujun Zhang,&nbsp;Hai Fu,&nbsp;Han Zhang,&nbsp;Defa Li,&nbsp;Zhongjian Xie","doi":"10.1002/EXP.20230128","DOIUrl":null,"url":null,"abstract":"<p>Real-time polymerase chain reaction (RT-PCR) remains the most prevalent molecular detection technology for sewage analysis but is plagued with numerous disadvantages, such as time consumption, high manpower requirements, and susceptibility to false negatives. In this study, an automated robot-driven photoelectrochemical (PEC) biosensing platform is constructed, that utilizes the CRISPR/Cas12a system to achieve fast, ultrasensitive, high specificity detection of biological loads in sewage. The Shennong-1 robot integrates several functional modules, involving sewage sampling and pretreatment to streamline the sewage monitoring. A screen-printed electrode is employed with a vertical graphene-based working electrode and enhanced with surface-deposited Au nanoparticles (NPs). CdTe/ZnS quantum dots (QDs) are further fabricated through the double-stranded DNA (dsDNA) anchored on Au NPs. Using the cDNA template of Omicron BA.5 spike gene as a model, the PEC biosensor demonstrates excellent analytical performance, with a lower detection limit of 2.93 × 10<sup>2</sup> z<span>m</span> and an outstanding selectivity at the level of single-base mutation recognition. Furthermore, the rapid, accurate detection of BA.5 in sewage demonstrates the feasibility of the PEC platform for sewage monitoring. In conclusion, this platform allows early detection and tracking of infectious disease outbreaks, providing timely data support for public health institutions to take appropriate prevention and control measures.</p>","PeriodicalId":72997,"journal":{"name":"Exploration (Beijing, China)","volume":"4 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/EXP.20230128","citationCount":"0","resultStr":"{\"title\":\"Detection of biological loads in sewage using the automated robot-driven photoelectrochemical biosensing platform\",\"authors\":\"Yiming Zhang,&nbsp;Zhi Chen,&nbsp;Songrui Wei,&nbsp;Yujun Zhang,&nbsp;Hai Fu,&nbsp;Han Zhang,&nbsp;Defa Li,&nbsp;Zhongjian Xie\",\"doi\":\"10.1002/EXP.20230128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Real-time polymerase chain reaction (RT-PCR) remains the most prevalent molecular detection technology for sewage analysis but is plagued with numerous disadvantages, such as time consumption, high manpower requirements, and susceptibility to false negatives. In this study, an automated robot-driven photoelectrochemical (PEC) biosensing platform is constructed, that utilizes the CRISPR/Cas12a system to achieve fast, ultrasensitive, high specificity detection of biological loads in sewage. The Shennong-1 robot integrates several functional modules, involving sewage sampling and pretreatment to streamline the sewage monitoring. A screen-printed electrode is employed with a vertical graphene-based working electrode and enhanced with surface-deposited Au nanoparticles (NPs). CdTe/ZnS quantum dots (QDs) are further fabricated through the double-stranded DNA (dsDNA) anchored on Au NPs. Using the cDNA template of Omicron BA.5 spike gene as a model, the PEC biosensor demonstrates excellent analytical performance, with a lower detection limit of 2.93 × 10<sup>2</sup> z<span>m</span> and an outstanding selectivity at the level of single-base mutation recognition. Furthermore, the rapid, accurate detection of BA.5 in sewage demonstrates the feasibility of the PEC platform for sewage monitoring. In conclusion, this platform allows early detection and tracking of infectious disease outbreaks, providing timely data support for public health institutions to take appropriate prevention and control measures.</p>\",\"PeriodicalId\":72997,\"journal\":{\"name\":\"Exploration (Beijing, China)\",\"volume\":\"4 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/EXP.20230128\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Exploration (Beijing, China)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/EXP.20230128\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Exploration (Beijing, China)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/EXP.20230128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

实时聚合酶链式反应(RT-PCR)仍是污水分析中最普遍的分子检测技术,但存在许多缺点,如耗时长、人力要求高、易出现假阴性等。本研究利用 CRISPR/Cas12a 系统构建了机器人驱动的自动光电化学(PEC)生物传感平台,实现了对污水中生物负载的快速、超灵敏、高特异性检测。神农一号机器人集成了多个功能模块,涉及污水采样和预处理,以简化污水监测过程。采用丝网印刷电极和垂直石墨烯基工作电极,并用表面沉积的金纳米粒子(NPs)进行增强。通过锚定在金纳米粒子上的双链 DNA(dsDNA),进一步制造出 CdTe/ZnS 量子点(QDs)。该 PEC 生物传感器以 Omicron BA.5 穗状病毒基因的 cDNA 模板为模型,具有优异的分析性能,检测下限为 2.93 × 102 zm,在单碱基突变识别水平上具有出色的选择性。此外,污水中 BA.5 的快速、准确检测证明了 PEC 平台用于污水监测的可行性。总之,该平台可对传染病疫情进行早期检测和跟踪,为公共卫生机构采取适当的防控措施提供及时的数据支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detection of biological loads in sewage using the automated robot-driven photoelectrochemical biosensing platform

Real-time polymerase chain reaction (RT-PCR) remains the most prevalent molecular detection technology for sewage analysis but is plagued with numerous disadvantages, such as time consumption, high manpower requirements, and susceptibility to false negatives. In this study, an automated robot-driven photoelectrochemical (PEC) biosensing platform is constructed, that utilizes the CRISPR/Cas12a system to achieve fast, ultrasensitive, high specificity detection of biological loads in sewage. The Shennong-1 robot integrates several functional modules, involving sewage sampling and pretreatment to streamline the sewage monitoring. A screen-printed electrode is employed with a vertical graphene-based working electrode and enhanced with surface-deposited Au nanoparticles (NPs). CdTe/ZnS quantum dots (QDs) are further fabricated through the double-stranded DNA (dsDNA) anchored on Au NPs. Using the cDNA template of Omicron BA.5 spike gene as a model, the PEC biosensor demonstrates excellent analytical performance, with a lower detection limit of 2.93 × 102 zm and an outstanding selectivity at the level of single-base mutation recognition. Furthermore, the rapid, accurate detection of BA.5 in sewage demonstrates the feasibility of the PEC platform for sewage monitoring. In conclusion, this platform allows early detection and tracking of infectious disease outbreaks, providing timely data support for public health institutions to take appropriate prevention and control measures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
17.20
自引率
0.00%
发文量
0
期刊最新文献
Issue Information Front Cover: Neural interfaces: Bridging the brain to the world beyond healthcare (EXP2 5/2024) Inside Front Cover: Conducting polymer hydrogels based on supramolecular strategies for wearable sensors (EXP2 5/2024) Inside Back Cover: Impact of diabetes mellitus on tuberculosis prevention, diagnosis, and treatment from an immunologic perspective (EXP2 5/2024) Back Cover: Detection of biological loads in sewage using the automated robot-driven photoelectrochemical biosensing platform (EXP2 5/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1