{"title":"用于中近红外超连续产生和光通信的混合卤化物光子晶体光纤研究","authors":"Sandeep Kumar Jain, Mohit Kumar Sharma, S. Vyas","doi":"10.1515/joc-2024-0025","DOIUrl":null,"url":null,"abstract":"\n This study describes a wideband supercontinuum generation (SCG) in the mid-infrared range using a chalcogenide multi-material microstructured fiber design with significant non-linearity under optical communication. The fiber has a single core of As2Se3 and three rings of As2S5 rods arranged in hexagonal pattern in the AsSe2 cladding region. The reported PCF design has effective area and nonlinear coefficients as 59.4174 μm2 and 219.36 W−1 km−1 respectively at 5.3 μm pump wavelength. Additionally, it has a chromatic dispersion profile that is nearly zero and flattened over a large wavelength range of 5–15 µm, which is advantageous for broadband supercontinuum spectrum in the mid-infrared region. Specifically, with pulse width and pulse peak power of 200 fs and 10 kW, respectively, for a 100 mm fibre length, this research work illustrates the SCG that expands from 1000 nm to over 15,000 nm. These extremely nonlinear PCFs are robust contenders for applications that are nonlinear in nature, such as the generation of slow-light and supercontinuum.","PeriodicalId":16675,"journal":{"name":"Journal of Optical Communications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of hybrid chalcogenide photonic crystal fiber for MIR supercontinuum generation and optical communication\",\"authors\":\"Sandeep Kumar Jain, Mohit Kumar Sharma, S. Vyas\",\"doi\":\"10.1515/joc-2024-0025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This study describes a wideband supercontinuum generation (SCG) in the mid-infrared range using a chalcogenide multi-material microstructured fiber design with significant non-linearity under optical communication. The fiber has a single core of As2Se3 and three rings of As2S5 rods arranged in hexagonal pattern in the AsSe2 cladding region. The reported PCF design has effective area and nonlinear coefficients as 59.4174 μm2 and 219.36 W−1 km−1 respectively at 5.3 μm pump wavelength. Additionally, it has a chromatic dispersion profile that is nearly zero and flattened over a large wavelength range of 5–15 µm, which is advantageous for broadband supercontinuum spectrum in the mid-infrared region. Specifically, with pulse width and pulse peak power of 200 fs and 10 kW, respectively, for a 100 mm fibre length, this research work illustrates the SCG that expands from 1000 nm to over 15,000 nm. These extremely nonlinear PCFs are robust contenders for applications that are nonlinear in nature, such as the generation of slow-light and supercontinuum.\",\"PeriodicalId\":16675,\"journal\":{\"name\":\"Journal of Optical Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Optical Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/joc-2024-0025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optical Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/joc-2024-0025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Investigation of hybrid chalcogenide photonic crystal fiber for MIR supercontinuum generation and optical communication
This study describes a wideband supercontinuum generation (SCG) in the mid-infrared range using a chalcogenide multi-material microstructured fiber design with significant non-linearity under optical communication. The fiber has a single core of As2Se3 and three rings of As2S5 rods arranged in hexagonal pattern in the AsSe2 cladding region. The reported PCF design has effective area and nonlinear coefficients as 59.4174 μm2 and 219.36 W−1 km−1 respectively at 5.3 μm pump wavelength. Additionally, it has a chromatic dispersion profile that is nearly zero and flattened over a large wavelength range of 5–15 µm, which is advantageous for broadband supercontinuum spectrum in the mid-infrared region. Specifically, with pulse width and pulse peak power of 200 fs and 10 kW, respectively, for a 100 mm fibre length, this research work illustrates the SCG that expands from 1000 nm to over 15,000 nm. These extremely nonlinear PCFs are robust contenders for applications that are nonlinear in nature, such as the generation of slow-light and supercontinuum.
期刊介绍:
This is the journal for all scientists working in optical communications. Journal of Optical Communications was the first international publication covering all fields of optical communications with guided waves. It is the aim of the journal to serve all scientists engaged in optical communications as a comprehensive journal tailored to their needs and as a forum for their publications. The journal focuses on the main fields in optical communications