用于中近红外超连续产生和光通信的混合卤化物光子晶体光纤研究

Q3 Engineering Journal of Optical Communications Pub Date : 2024-03-14 DOI:10.1515/joc-2024-0025
Sandeep Kumar Jain, Mohit Kumar Sharma, S. Vyas
{"title":"用于中近红外超连续产生和光通信的混合卤化物光子晶体光纤研究","authors":"Sandeep Kumar Jain, Mohit Kumar Sharma, S. Vyas","doi":"10.1515/joc-2024-0025","DOIUrl":null,"url":null,"abstract":"\n This study describes a wideband supercontinuum generation (SCG) in the mid-infrared range using a chalcogenide multi-material microstructured fiber design with significant non-linearity under optical communication. The fiber has a single core of As2Se3 and three rings of As2S5 rods arranged in hexagonal pattern in the AsSe2 cladding region. The reported PCF design has effective area and nonlinear coefficients as 59.4174 μm2 and 219.36 W−1 km−1 respectively at 5.3 μm pump wavelength. Additionally, it has a chromatic dispersion profile that is nearly zero and flattened over a large wavelength range of 5–15 µm, which is advantageous for broadband supercontinuum spectrum in the mid-infrared region. Specifically, with pulse width and pulse peak power of 200 fs and 10 kW, respectively, for a 100 mm fibre length, this research work illustrates the SCG that expands from 1000 nm to over 15,000 nm. These extremely nonlinear PCFs are robust contenders for applications that are nonlinear in nature, such as the generation of slow-light and supercontinuum.","PeriodicalId":16675,"journal":{"name":"Journal of Optical Communications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of hybrid chalcogenide photonic crystal fiber for MIR supercontinuum generation and optical communication\",\"authors\":\"Sandeep Kumar Jain, Mohit Kumar Sharma, S. Vyas\",\"doi\":\"10.1515/joc-2024-0025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This study describes a wideband supercontinuum generation (SCG) in the mid-infrared range using a chalcogenide multi-material microstructured fiber design with significant non-linearity under optical communication. The fiber has a single core of As2Se3 and three rings of As2S5 rods arranged in hexagonal pattern in the AsSe2 cladding region. The reported PCF design has effective area and nonlinear coefficients as 59.4174 μm2 and 219.36 W−1 km−1 respectively at 5.3 μm pump wavelength. Additionally, it has a chromatic dispersion profile that is nearly zero and flattened over a large wavelength range of 5–15 µm, which is advantageous for broadband supercontinuum spectrum in the mid-infrared region. Specifically, with pulse width and pulse peak power of 200 fs and 10 kW, respectively, for a 100 mm fibre length, this research work illustrates the SCG that expands from 1000 nm to over 15,000 nm. These extremely nonlinear PCFs are robust contenders for applications that are nonlinear in nature, such as the generation of slow-light and supercontinuum.\",\"PeriodicalId\":16675,\"journal\":{\"name\":\"Journal of Optical Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Optical Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/joc-2024-0025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optical Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/joc-2024-0025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

本研究介绍了一种中红外范围的宽带超连续发生(SCG)技术,该技术采用了一种在光通信条件下具有显著非线性的掺瑀多材料微结构光纤设计。该光纤具有 As2Se3 的单芯和 AsSe2 包层区呈六角形排列的三环 As2S5 棒。所报告的 PCF 设计在 5.3 μm 泵浦波长下的有效面积和非线性系数分别为 59.4174 μm2 和 219.36 W-1 km-1。此外,它的色度色散曲线在 5-15 μm 的大波长范围内近乎为零,且呈扁平状,这对中红外区域的宽带超连续光谱非常有利。具体来说,在 100 毫米长的光纤中,脉冲宽度和脉冲峰值功率分别为 200 fs 和 10 kW,这项研究工作展示了从 1000 纳米扩展到超过 15000 纳米的 SCG。这些极非线性 PCF 是非线性应用(如产生慢光和超连续)的有力竞争者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigation of hybrid chalcogenide photonic crystal fiber for MIR supercontinuum generation and optical communication
This study describes a wideband supercontinuum generation (SCG) in the mid-infrared range using a chalcogenide multi-material microstructured fiber design with significant non-linearity under optical communication. The fiber has a single core of As2Se3 and three rings of As2S5 rods arranged in hexagonal pattern in the AsSe2 cladding region. The reported PCF design has effective area and nonlinear coefficients as 59.4174 μm2 and 219.36 W−1 km−1 respectively at 5.3 μm pump wavelength. Additionally, it has a chromatic dispersion profile that is nearly zero and flattened over a large wavelength range of 5–15 µm, which is advantageous for broadband supercontinuum spectrum in the mid-infrared region. Specifically, with pulse width and pulse peak power of 200 fs and 10 kW, respectively, for a 100 mm fibre length, this research work illustrates the SCG that expands from 1000 nm to over 15,000 nm. These extremely nonlinear PCFs are robust contenders for applications that are nonlinear in nature, such as the generation of slow-light and supercontinuum.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Optical Communications
Journal of Optical Communications Engineering-Electrical and Electronic Engineering
CiteScore
2.90
自引率
0.00%
发文量
86
期刊介绍: This is the journal for all scientists working in optical communications. Journal of Optical Communications was the first international publication covering all fields of optical communications with guided waves. It is the aim of the journal to serve all scientists engaged in optical communications as a comprehensive journal tailored to their needs and as a forum for their publications. The journal focuses on the main fields in optical communications
期刊最新文献
A fiber-wireless integration approach in WDM-PON architecture, boosted with polarization multiplexing and optical frequency comb source Performance study of microwave photonic links by considering the effect of phase shifters and bias conditions on dual-drive dual parallel Mach–Zehnder modulator Hybrid optical-electronic compensation of fiber nonlinearity for long-haul coherent optical transmission Performance parameters estimation of high speed Silicon/Germanium/InGaAsP avalanche photodiodes wide bandwidth capability in ultra high speed optical communication system High thermal stability and high-performance efficiency capability of light sources–based rate equation models in optical fiber transmission systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1