{"title":"库仑碰撞动力学模型的希尔伯特扩展","authors":"Zhimeng Ouyang, Lei Wu, Qinghua Xiao","doi":"10.1090/qam/1689","DOIUrl":null,"url":null,"abstract":"The relativistic Vlasov-Maxwell-Landau (r-VML) system and the relativistic Landau (r-LAN) equation are fundamental models that describe the dynamics of an electron gas. In this paper, we introduce a novel weighted energy method and establish the validity of the Hilbert expansion for the one-species r-VML system and r-LAN equation. As the Knudsen number shrinks to zero, we rigorously demonstrate the relativistic Euler-Maxwell limit and relativistic Euler limit, respectively. This successfully resolves the long-standing open problem regarding the hydrodynamic limits of Landau-type equations.","PeriodicalId":20964,"journal":{"name":"Quarterly of Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hilbert expansion for Coulomb collisional kinetic models\",\"authors\":\"Zhimeng Ouyang, Lei Wu, Qinghua Xiao\",\"doi\":\"10.1090/qam/1689\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The relativistic Vlasov-Maxwell-Landau (r-VML) system and the relativistic Landau (r-LAN) equation are fundamental models that describe the dynamics of an electron gas. In this paper, we introduce a novel weighted energy method and establish the validity of the Hilbert expansion for the one-species r-VML system and r-LAN equation. As the Knudsen number shrinks to zero, we rigorously demonstrate the relativistic Euler-Maxwell limit and relativistic Euler limit, respectively. This successfully resolves the long-standing open problem regarding the hydrodynamic limits of Landau-type equations.\",\"PeriodicalId\":20964,\"journal\":{\"name\":\"Quarterly of Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quarterly of Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/qam/1689\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly of Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/qam/1689","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Hilbert expansion for Coulomb collisional kinetic models
The relativistic Vlasov-Maxwell-Landau (r-VML) system and the relativistic Landau (r-LAN) equation are fundamental models that describe the dynamics of an electron gas. In this paper, we introduce a novel weighted energy method and establish the validity of the Hilbert expansion for the one-species r-VML system and r-LAN equation. As the Knudsen number shrinks to zero, we rigorously demonstrate the relativistic Euler-Maxwell limit and relativistic Euler limit, respectively. This successfully resolves the long-standing open problem regarding the hydrodynamic limits of Landau-type equations.
期刊介绍:
The Quarterly of Applied Mathematics contains original papers in applied mathematics which have a close connection with applications. An author index appears in the last issue of each volume.
This journal, published quarterly by Brown University with articles electronically published individually before appearing in an issue, is distributed by the American Mathematical Society (AMS). In order to take advantage of some features offered for this journal, users will occasionally be linked to pages on the AMS website.