{"title":"构建气候预警系统:利用 BiLSTM 预测未来气温和气候安全","authors":"Jie Yang, Zijun Li","doi":"10.54097/zscep661","DOIUrl":null,"url":null,"abstract":"In light of the worsening global climate, providing predictive models for surface temperature and energy consumption is crucial for formulating effective climate action strategies. Initially, a Bi-directional Long Short-Term Memory (BiLSTM) network model is established to predict the maximum surface temperatures over the next century, with the Seasonal AutoRegressive Integrated Moving Average (SARIMA) model serving as a benchmark. To assess the risk levels of climate security, the k-means clustering algorithm is utilized to classify the growth rates of carbon dioxide emissions, enabling the construction of a three-tier climate security early warning index. Subsequently, a hybrid classification model based on Support Vector Machine (SVM) and Random Forest (RF) takes the energy consumption growth rates as inputs and the warning indices as outputs to construct a climate security early warning system. The BiLSTM model is employed to predict the energy consumption growth rates for the upcoming decade, and these rates are input into the SVM-RF model to forecast future warning levels. The study demonstrates that the model can effectively predict the maximum surface temperatures and provide a three-tier safety warning system for future climate risk management. The intent of this research is to offer a novel tool for global climate prevention and to deliver practical application value to policymakers in finance, energy, and environmental sectors.","PeriodicalId":504530,"journal":{"name":"Frontiers in Computing and Intelligent Systems","volume":"21 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction of a Climate Early Warning System: Predicting Future Temperatures and Climate Security Using BiLSTM\",\"authors\":\"Jie Yang, Zijun Li\",\"doi\":\"10.54097/zscep661\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In light of the worsening global climate, providing predictive models for surface temperature and energy consumption is crucial for formulating effective climate action strategies. Initially, a Bi-directional Long Short-Term Memory (BiLSTM) network model is established to predict the maximum surface temperatures over the next century, with the Seasonal AutoRegressive Integrated Moving Average (SARIMA) model serving as a benchmark. To assess the risk levels of climate security, the k-means clustering algorithm is utilized to classify the growth rates of carbon dioxide emissions, enabling the construction of a three-tier climate security early warning index. Subsequently, a hybrid classification model based on Support Vector Machine (SVM) and Random Forest (RF) takes the energy consumption growth rates as inputs and the warning indices as outputs to construct a climate security early warning system. The BiLSTM model is employed to predict the energy consumption growth rates for the upcoming decade, and these rates are input into the SVM-RF model to forecast future warning levels. The study demonstrates that the model can effectively predict the maximum surface temperatures and provide a three-tier safety warning system for future climate risk management. The intent of this research is to offer a novel tool for global climate prevention and to deliver practical application value to policymakers in finance, energy, and environmental sectors.\",\"PeriodicalId\":504530,\"journal\":{\"name\":\"Frontiers in Computing and Intelligent Systems\",\"volume\":\"21 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Computing and Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54097/zscep661\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Computing and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54097/zscep661","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Construction of a Climate Early Warning System: Predicting Future Temperatures and Climate Security Using BiLSTM
In light of the worsening global climate, providing predictive models for surface temperature and energy consumption is crucial for formulating effective climate action strategies. Initially, a Bi-directional Long Short-Term Memory (BiLSTM) network model is established to predict the maximum surface temperatures over the next century, with the Seasonal AutoRegressive Integrated Moving Average (SARIMA) model serving as a benchmark. To assess the risk levels of climate security, the k-means clustering algorithm is utilized to classify the growth rates of carbon dioxide emissions, enabling the construction of a three-tier climate security early warning index. Subsequently, a hybrid classification model based on Support Vector Machine (SVM) and Random Forest (RF) takes the energy consumption growth rates as inputs and the warning indices as outputs to construct a climate security early warning system. The BiLSTM model is employed to predict the energy consumption growth rates for the upcoming decade, and these rates are input into the SVM-RF model to forecast future warning levels. The study demonstrates that the model can effectively predict the maximum surface temperatures and provide a three-tier safety warning system for future climate risk management. The intent of this research is to offer a novel tool for global climate prevention and to deliver practical application value to policymakers in finance, energy, and environmental sectors.