新型荧光探针揭示了 ME/CFS 成纤维细胞中脂滴的动态变化

Siyang Ding, Oana Sanislav, Daniel Missailidis, Claire Yvonne Allan, Tze Cin Owyong, Ming-Yu Wu, Sijie Chen, Paul Robert Fisher, Sarah Jane Annesley, Yuning Hong
{"title":"新型荧光探针揭示了 ME/CFS 成纤维细胞中脂滴的动态变化","authors":"Siyang Ding,&nbsp;Oana Sanislav,&nbsp;Daniel Missailidis,&nbsp;Claire Yvonne Allan,&nbsp;Tze Cin Owyong,&nbsp;Ming-Yu Wu,&nbsp;Sijie Chen,&nbsp;Paul Robert Fisher,&nbsp;Sarah Jane Annesley,&nbsp;Yuning Hong","doi":"10.1002/adsr.202300178","DOIUrl":null,"url":null,"abstract":"<p>Lipid droplets (LDs) are dynamic cellular organelles that play an essential role in lipid metabolism and storage. LD dysregulation has been implicated in various diseases. However, investigations into the cellular LD dynamics under disease conditions have been rarely reported, possibly due to the absence of high performing LD imaging agents. Here a novel fluorogenic probe, AM-QTPA, is reported for specific LD imaging. AM-QTPA demonstrates viscosity sensitivity and aggregation-induced emission enhancement characteristics. It is live cell permeable and can specifically light up LDs in cells, with low background noise and superior signals that can be quantified. After validation in cell model with LD accumulation induced by oleic acid treatment, AM-QTPA is applied in a small proof-of-concept number of human fibroblast samples derived from people diagnosed with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), a complex and debilitating disease with unknown cause. The results indicate the presence of larger but fewer LDs in ME/CFS fibroblasts compared to the healthy counterparts, accompanying with frequent LD-mitochondria contacts, suggesting potential upregulation of lipolysis in ME/CFS connective tissue like fibroblasts. Overall, AM-QTPA provides new understanding of the anomalous LD dynamics in disease status, which, potentially, will facilitate in-depth investigation of the pathogenesis of ME/CFS.</p>","PeriodicalId":100037,"journal":{"name":"Advanced Sensor Research","volume":"3 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202300178","citationCount":"0","resultStr":"{\"title\":\"A Novel Fluorogenic Probe Reveals Lipid Droplet Dynamics in ME/CFS Fibroblasts\",\"authors\":\"Siyang Ding,&nbsp;Oana Sanislav,&nbsp;Daniel Missailidis,&nbsp;Claire Yvonne Allan,&nbsp;Tze Cin Owyong,&nbsp;Ming-Yu Wu,&nbsp;Sijie Chen,&nbsp;Paul Robert Fisher,&nbsp;Sarah Jane Annesley,&nbsp;Yuning Hong\",\"doi\":\"10.1002/adsr.202300178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Lipid droplets (LDs) are dynamic cellular organelles that play an essential role in lipid metabolism and storage. LD dysregulation has been implicated in various diseases. However, investigations into the cellular LD dynamics under disease conditions have been rarely reported, possibly due to the absence of high performing LD imaging agents. Here a novel fluorogenic probe, AM-QTPA, is reported for specific LD imaging. AM-QTPA demonstrates viscosity sensitivity and aggregation-induced emission enhancement characteristics. It is live cell permeable and can specifically light up LDs in cells, with low background noise and superior signals that can be quantified. After validation in cell model with LD accumulation induced by oleic acid treatment, AM-QTPA is applied in a small proof-of-concept number of human fibroblast samples derived from people diagnosed with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), a complex and debilitating disease with unknown cause. The results indicate the presence of larger but fewer LDs in ME/CFS fibroblasts compared to the healthy counterparts, accompanying with frequent LD-mitochondria contacts, suggesting potential upregulation of lipolysis in ME/CFS connective tissue like fibroblasts. Overall, AM-QTPA provides new understanding of the anomalous LD dynamics in disease status, which, potentially, will facilitate in-depth investigation of the pathogenesis of ME/CFS.</p>\",\"PeriodicalId\":100037,\"journal\":{\"name\":\"Advanced Sensor Research\",\"volume\":\"3 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202300178\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Sensor Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adsr.202300178\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Sensor Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adsr.202300178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

脂滴(LDs)是一种动态细胞器,在脂质代谢和储存过程中发挥着重要作用。脂滴失调与多种疾病有关。然而,可能由于缺乏高性能的 LD 成像剂,有关疾病条件下细胞 LD 动态的研究鲜有报道。本文报告了一种用于特异性低密度脂蛋白成像的新型荧光探针 AM-QTPA。AM-QTPA 具有粘度敏感性和聚集诱导发射增强特性。它具有活细胞渗透性,能特异性地照亮细胞中的低密度脂蛋白,背景噪声低,信号优异且可量化。在油酸处理诱导 LD 积累的细胞模型中进行验证后,AM-QTPA 被应用于少量人类成纤维细胞样本的概念验证,这些样本来自被诊断患有肌痛性脑脊髓炎/慢性疲劳综合征(ME/CFS)的患者,这是一种病因不明的复杂衰弱性疾病。研究结果表明,与健康成纤维细胞相比,ME/CFS 成纤维细胞中存在更大但更少的 LD,同时 LD 与线粒体接触频繁,这表明 ME/CFS 结缔组织(如成纤维细胞)中可能存在脂肪分解上调。总之,AM-QTPA为疾病状态下异常LD动态提供了新的认识,这将有助于深入研究ME/CFS的发病机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Novel Fluorogenic Probe Reveals Lipid Droplet Dynamics in ME/CFS Fibroblasts

Lipid droplets (LDs) are dynamic cellular organelles that play an essential role in lipid metabolism and storage. LD dysregulation has been implicated in various diseases. However, investigations into the cellular LD dynamics under disease conditions have been rarely reported, possibly due to the absence of high performing LD imaging agents. Here a novel fluorogenic probe, AM-QTPA, is reported for specific LD imaging. AM-QTPA demonstrates viscosity sensitivity and aggregation-induced emission enhancement characteristics. It is live cell permeable and can specifically light up LDs in cells, with low background noise and superior signals that can be quantified. After validation in cell model with LD accumulation induced by oleic acid treatment, AM-QTPA is applied in a small proof-of-concept number of human fibroblast samples derived from people diagnosed with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), a complex and debilitating disease with unknown cause. The results indicate the presence of larger but fewer LDs in ME/CFS fibroblasts compared to the healthy counterparts, accompanying with frequent LD-mitochondria contacts, suggesting potential upregulation of lipolysis in ME/CFS connective tissue like fibroblasts. Overall, AM-QTPA provides new understanding of the anomalous LD dynamics in disease status, which, potentially, will facilitate in-depth investigation of the pathogenesis of ME/CFS.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Transforming Renal Diagnosis: Graphene-Enhanced Lab-On-a-Chip for Multiplexed Kidney Biomarker Detection in Capillary Blood (Adv. Sensor Res. 11/2024) Masthead (Adv. Sensor Res. 11/2024) All Solid Photonic Crystal Fiber Enabled by 3D Printing Fiber Technology for Sensing of Multiple Parameters (Adv. Sensor Res. 11/2024) Design Approaches and Electromechanical Modeling of Conformable Piezoelectric-Based Ultrasound Systems (Adv. Sensor Res. 10/2024) Masthead (Adv. Sensor Res. 10/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1