推进海事安全:通过计算机视觉、深度学习方法和直方图均衡化技术早期探测船舶火灾

Fire Pub Date : 2024-03-08 DOI:10.3390/fire7030084
Aziza Ergasheva, Farkhod Akhmedov, A. Abdusalomov, Wooseong Kim
{"title":"推进海事安全:通过计算机视觉、深度学习方法和直方图均衡化技术早期探测船舶火灾","authors":"Aziza Ergasheva, Farkhod Akhmedov, A. Abdusalomov, Wooseong Kim","doi":"10.3390/fire7030084","DOIUrl":null,"url":null,"abstract":"The maritime sector confronts an escalating challenge with the emergence of onboard fires aboard in ships, evidenced by a pronounced uptick in incidents in recent years. The ramifications of such fires transcend immediate safety apprehensions, precipitating repercussions that resonate on a global scale. This study underscores the paramount importance of ship fire detection as a proactive measure to mitigate risks and fortify maritime safety comprehensively. Initially, we created and labeled a custom ship dataset. The collected images are varied in their size, like having high- and low-resolution images in the dataset. Then, by leveraging the YOLO (You Only Look Once) object detection algorithm we developed an efficacious and accurate ship fire detection model for discerning the presence of fires aboard vessels navigating marine routes. The ship fire detection model was trained on 50 epochs with more than 25,000 images. The histogram equalization (HE) technique was also applied to avoid destruction from water vapor and to increase object detection. After training, images of ships were input into the inference model after HE, to be categorized into two classes. Empirical findings gleaned from the proposed methodology attest to the model’s exceptional efficacy, with the highest detection accuracy attaining a noteworthy 0.99% across both fire-afflicted and non-fire scenarios.","PeriodicalId":12279,"journal":{"name":"Fire","volume":"110 4‐5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancing Maritime Safety: Early Detection of Ship Fires through Computer Vision, Deep Learning Approaches, and Histogram Equalization Techniques\",\"authors\":\"Aziza Ergasheva, Farkhod Akhmedov, A. Abdusalomov, Wooseong Kim\",\"doi\":\"10.3390/fire7030084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The maritime sector confronts an escalating challenge with the emergence of onboard fires aboard in ships, evidenced by a pronounced uptick in incidents in recent years. The ramifications of such fires transcend immediate safety apprehensions, precipitating repercussions that resonate on a global scale. This study underscores the paramount importance of ship fire detection as a proactive measure to mitigate risks and fortify maritime safety comprehensively. Initially, we created and labeled a custom ship dataset. The collected images are varied in their size, like having high- and low-resolution images in the dataset. Then, by leveraging the YOLO (You Only Look Once) object detection algorithm we developed an efficacious and accurate ship fire detection model for discerning the presence of fires aboard vessels navigating marine routes. The ship fire detection model was trained on 50 epochs with more than 25,000 images. The histogram equalization (HE) technique was also applied to avoid destruction from water vapor and to increase object detection. After training, images of ships were input into the inference model after HE, to be categorized into two classes. Empirical findings gleaned from the proposed methodology attest to the model’s exceptional efficacy, with the highest detection accuracy attaining a noteworthy 0.99% across both fire-afflicted and non-fire scenarios.\",\"PeriodicalId\":12279,\"journal\":{\"name\":\"Fire\",\"volume\":\"110 4‐5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fire\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/fire7030084\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fire7030084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,船舶火灾事故明显增加,海事部门面临着日益严峻的挑战。此类火灾的影响已超越了眼前的安全问题,其后果将波及全球。这项研究强调了船舶火灾探测的极端重要性,它是降低风险和全面加强海事安全的一项积极措施。最初,我们创建了一个自定义船舶数据集,并对其进行了标注。收集到的图像大小不一,如数据集中有高分辨率和低分辨率图像。然后,利用 YOLO(只看一次)物体检测算法,我们开发了一个高效、准确的船舶火灾检测模型,用于辨别在海上航线航行的船舶上是否存在火灾。船舶火灾检测模型是在 50 个历时、25,000 多张图像上训练出来的。此外,还应用了直方图均衡化(HE)技术,以避免水蒸气对图像的破坏,并提高目标检测率。训练完成后,船舶图像被输入 HE 后的推理模型,并被分为两类。从提出的方法中收集的经验结果证明了该模型的卓越功效,在火灾和非火灾场景中,最高检测准确率达到了值得注意的 0.99%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Advancing Maritime Safety: Early Detection of Ship Fires through Computer Vision, Deep Learning Approaches, and Histogram Equalization Techniques
The maritime sector confronts an escalating challenge with the emergence of onboard fires aboard in ships, evidenced by a pronounced uptick in incidents in recent years. The ramifications of such fires transcend immediate safety apprehensions, precipitating repercussions that resonate on a global scale. This study underscores the paramount importance of ship fire detection as a proactive measure to mitigate risks and fortify maritime safety comprehensively. Initially, we created and labeled a custom ship dataset. The collected images are varied in their size, like having high- and low-resolution images in the dataset. Then, by leveraging the YOLO (You Only Look Once) object detection algorithm we developed an efficacious and accurate ship fire detection model for discerning the presence of fires aboard vessels navigating marine routes. The ship fire detection model was trained on 50 epochs with more than 25,000 images. The histogram equalization (HE) technique was also applied to avoid destruction from water vapor and to increase object detection. After training, images of ships were input into the inference model after HE, to be categorized into two classes. Empirical findings gleaned from the proposed methodology attest to the model’s exceptional efficacy, with the highest detection accuracy attaining a noteworthy 0.99% across both fire-afflicted and non-fire scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impacts of Fire Frequency on Net CO2 Emissions in the Cerrado Savanna Vegetation Assessing the Effect of Community Preparedness on Property Damage Costs during Wildfires: A Case Study of Greece Fire Risk Reduction and Recover Energy Potential: A Disruptive Theoretical Optimization Model to the Residual Biomass Supply Chain Experimental Study on the Influence of High-Pressure Water Mist on the Ceiling Temperature of a Longitudinally Ventilated Tunnel Effects of Fuel Removal on the Flammability of Surface Fuels in Betula platyphylla in the Wildland–Urban Interface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1