纳米纤维素/碳化废橡胶纳米复合材料的开发与表征

Engin Kocatürk, Ferhat Şen, Mustafa Zor, Zeki Candan
{"title":"纳米纤维素/碳化废橡胶纳米复合材料的开发与表征","authors":"Engin Kocatürk, Ferhat Şen, Mustafa Zor, Zeki Candan","doi":"10.15376/biores.19.2.2670-2684","DOIUrl":null,"url":null,"abstract":"Recycling is one of the most popular research topics today. In this study, in addition to the evaluation of waste tires, which are frequently encountered in the industry and difficult to dispose of, a green biomaterial, nanocellulose-based new generation nanocomposite was produced and characterized for the first time. Carbonized waste rubber, obtained by pyrolysis of tire wastes, was reinforced with nanocellulose at levels of 0.10%, 0.25%, 0.5%, and 1% by weight. The prepared nanocellulose-based nanocomposites were investigated by X-ray diffraction (XRD), morphological properties by scanning electron microscopy (SEM), thermal properties by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and dynamic mechanical thermal (DMTA). In addition, the percentage of gel contents of the produced nanocomposites were determined. Thermal analyses revealed that the sample containing 1% carbonized waste rubber showed the highest thermal stability and at 750 °C the ash yield increased up to 25% compared to nanocellulose. The fabricated nanocomposites had about 10 times higher storage modulus compared to pure NC. All results show that the green nanocellulose-based nanocomposites can be used for future applications in industry.","PeriodicalId":503414,"journal":{"name":"BioResources","volume":"32 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development and characterization of nanocellulose/ carbonized waste rubber nanocomposites\",\"authors\":\"Engin Kocatürk, Ferhat Şen, Mustafa Zor, Zeki Candan\",\"doi\":\"10.15376/biores.19.2.2670-2684\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recycling is one of the most popular research topics today. In this study, in addition to the evaluation of waste tires, which are frequently encountered in the industry and difficult to dispose of, a green biomaterial, nanocellulose-based new generation nanocomposite was produced and characterized for the first time. Carbonized waste rubber, obtained by pyrolysis of tire wastes, was reinforced with nanocellulose at levels of 0.10%, 0.25%, 0.5%, and 1% by weight. The prepared nanocellulose-based nanocomposites were investigated by X-ray diffraction (XRD), morphological properties by scanning electron microscopy (SEM), thermal properties by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and dynamic mechanical thermal (DMTA). In addition, the percentage of gel contents of the produced nanocomposites were determined. Thermal analyses revealed that the sample containing 1% carbonized waste rubber showed the highest thermal stability and at 750 °C the ash yield increased up to 25% compared to nanocellulose. The fabricated nanocomposites had about 10 times higher storage modulus compared to pure NC. All results show that the green nanocellulose-based nanocomposites can be used for future applications in industry.\",\"PeriodicalId\":503414,\"journal\":{\"name\":\"BioResources\",\"volume\":\"32 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BioResources\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15376/biores.19.2.2670-2684\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioResources","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15376/biores.19.2.2670-2684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

回收利用是当今最热门的研究课题之一。在本研究中,除了对工业中经常遇到且难以处理的废轮胎进行评估外,还首次生产了一种绿色生物材料,即基于纳米纤维素的新一代纳米复合材料,并对其进行了表征。通过热解轮胎废料得到的碳化废橡胶中添加了纳米纤维素,添加量分别为 0.10%、0.25%、0.5% 和 1%。通过 X 射线衍射(XRD)、扫描电子显微镜(SEM)、热重分析(TGA)、差示扫描量热仪(DSC)和动态机械热(DMTA)研究了所制备的纳米纤维素基纳米复合材料的形态特性。此外,还测定了所制纳米复合材料的凝胶含量百分比。热分析表明,含 1%碳化废橡胶的样品显示出最高的热稳定性,与纳米纤维素相比,在 750 °C 时,灰分产量增加了 25%。与纯 NC 相比,制备的纳米复合材料的存储模量高出约 10 倍。所有结果表明,基于纳米纤维素的绿色纳米复合材料可用于未来的工业应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development and characterization of nanocellulose/ carbonized waste rubber nanocomposites
Recycling is one of the most popular research topics today. In this study, in addition to the evaluation of waste tires, which are frequently encountered in the industry and difficult to dispose of, a green biomaterial, nanocellulose-based new generation nanocomposite was produced and characterized for the first time. Carbonized waste rubber, obtained by pyrolysis of tire wastes, was reinforced with nanocellulose at levels of 0.10%, 0.25%, 0.5%, and 1% by weight. The prepared nanocellulose-based nanocomposites were investigated by X-ray diffraction (XRD), morphological properties by scanning electron microscopy (SEM), thermal properties by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and dynamic mechanical thermal (DMTA). In addition, the percentage of gel contents of the produced nanocomposites were determined. Thermal analyses revealed that the sample containing 1% carbonized waste rubber showed the highest thermal stability and at 750 °C the ash yield increased up to 25% compared to nanocellulose. The fabricated nanocomposites had about 10 times higher storage modulus compared to pure NC. All results show that the green nanocellulose-based nanocomposites can be used for future applications in industry.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The eutrophication-related index of drinking water sources based on the oxidation-reduction potential A systematic classification and typological assessment method for mortise and tenon joints Structure and oxygen evolution reaction performance of Ni-supported catalysts based on steam-exploded poplar Methods for characterization and continuum modeling of inhomogeneous properties of paper and paperboard materials: A review Determining the optimum layer combination for cross-laminated timber panels according to timber strength classes using Artificial Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1