Jiahao Qin, Xiaofeng Yang, Tianyi Zhang, Shuilan Bi
{"title":"BI-TST_YOLOv5:基于改进的 YOLOv5 模型的地面缺陷识别算法","authors":"Jiahao Qin, Xiaofeng Yang, Tianyi Zhang, Shuilan Bi","doi":"10.3390/wevj15030102","DOIUrl":null,"url":null,"abstract":"Pavement defect detection technology stands as a pivotal component within intelligent driving systems, demanding heightened precision and rapid detection rates. Addressing the complexities arising from diverse defect types and intricate backgrounds in visual sensing, this study introduces an enhanced approach to augment the network structure and activation function within the foundational YOLOv5 algorithm. Initially, modifications to the YOLOv5’s architecture incorporate an adjustment to the Leaky ReLU activation function, thereby enhancing regression stability and accuracy. Subsequently, the integration of bi-level routing attention into the network’s head layer optimizes the attention mechanism, notably improving overall efficiency. Additionally, the replacement of the YOLOv5 backbone layer’s C3 module with the C3-TST module enhances initial convergence efficiency in target detection. Comparative analysis against the original YOLOv5s network reveals a 2% enhancement in map50 and a 1.8% improvement in F1, signifying an overall advancement in network performance. The initial convergence rate of the algorithm has been improved, and the accuracy and operational efficiency have also been greatly improved, especially on models with small-scale training sets.","PeriodicalId":38979,"journal":{"name":"World Electric Vehicle Journal","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BI-TST_YOLOv5: Ground Defect Recognition Algorithm Based on Improved YOLOv5 Model\",\"authors\":\"Jiahao Qin, Xiaofeng Yang, Tianyi Zhang, Shuilan Bi\",\"doi\":\"10.3390/wevj15030102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pavement defect detection technology stands as a pivotal component within intelligent driving systems, demanding heightened precision and rapid detection rates. Addressing the complexities arising from diverse defect types and intricate backgrounds in visual sensing, this study introduces an enhanced approach to augment the network structure and activation function within the foundational YOLOv5 algorithm. Initially, modifications to the YOLOv5’s architecture incorporate an adjustment to the Leaky ReLU activation function, thereby enhancing regression stability and accuracy. Subsequently, the integration of bi-level routing attention into the network’s head layer optimizes the attention mechanism, notably improving overall efficiency. Additionally, the replacement of the YOLOv5 backbone layer’s C3 module with the C3-TST module enhances initial convergence efficiency in target detection. Comparative analysis against the original YOLOv5s network reveals a 2% enhancement in map50 and a 1.8% improvement in F1, signifying an overall advancement in network performance. The initial convergence rate of the algorithm has been improved, and the accuracy and operational efficiency have also been greatly improved, especially on models with small-scale training sets.\",\"PeriodicalId\":38979,\"journal\":{\"name\":\"World Electric Vehicle Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World Electric Vehicle Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/wevj15030102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Electric Vehicle Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/wevj15030102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
BI-TST_YOLOv5: Ground Defect Recognition Algorithm Based on Improved YOLOv5 Model
Pavement defect detection technology stands as a pivotal component within intelligent driving systems, demanding heightened precision and rapid detection rates. Addressing the complexities arising from diverse defect types and intricate backgrounds in visual sensing, this study introduces an enhanced approach to augment the network structure and activation function within the foundational YOLOv5 algorithm. Initially, modifications to the YOLOv5’s architecture incorporate an adjustment to the Leaky ReLU activation function, thereby enhancing regression stability and accuracy. Subsequently, the integration of bi-level routing attention into the network’s head layer optimizes the attention mechanism, notably improving overall efficiency. Additionally, the replacement of the YOLOv5 backbone layer’s C3 module with the C3-TST module enhances initial convergence efficiency in target detection. Comparative analysis against the original YOLOv5s network reveals a 2% enhancement in map50 and a 1.8% improvement in F1, signifying an overall advancement in network performance. The initial convergence rate of the algorithm has been improved, and the accuracy and operational efficiency have also been greatly improved, especially on models with small-scale training sets.