{"title":"基于模拟的级联泵站优化运行模型研究","authors":"Xinrong Zheng, Zhanyi Gao, Peiling Yang, Mengting Chen","doi":"10.1002/ird.2944","DOIUrl":null,"url":null,"abstract":"<p>Cascade pumping stations (CPS) consume a large amount of energy every year in lifting districts. To obtain a reasonable and feasible operation scheme for CPS, this paper proposes an optimal operation model for CPS based on simulations. A one-dimensional unsteady flow model of open canals was coupled with the optimal operation model of CPS, and an energy-dominated optimization was proposed with the water level of the inlet pool as the coordinated variable. The optimization model was solved by using the catch-up method and the nondominated sorted genetic algorithm II (NSGA-II). The optimal operation method was validated and implemented in the first-stage and second-stage pumping stations of the Zuncun Irrigation Project by lifting water from the Yellow River in Shanxi province. The results showed that the proposed optimization model can reduce the energy consumption of the CPS by 4% compared with the actual operation. In addition, the optimal operation model of the CPS coupled with simulation can realize the dynamic balance of flow by stabilizing the inlet pool level to operate within a safe range. The energy consumption of the CPS can be reduced by keeping the water level of the intake pool as high a level as possible.</p>","PeriodicalId":14848,"journal":{"name":"Irrigation and Drainage","volume":"73 4","pages":"1344-1357"},"PeriodicalIF":1.6000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on an optimal operation model for cascade pumping stations based on simulations\",\"authors\":\"Xinrong Zheng, Zhanyi Gao, Peiling Yang, Mengting Chen\",\"doi\":\"10.1002/ird.2944\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Cascade pumping stations (CPS) consume a large amount of energy every year in lifting districts. To obtain a reasonable and feasible operation scheme for CPS, this paper proposes an optimal operation model for CPS based on simulations. A one-dimensional unsteady flow model of open canals was coupled with the optimal operation model of CPS, and an energy-dominated optimization was proposed with the water level of the inlet pool as the coordinated variable. The optimization model was solved by using the catch-up method and the nondominated sorted genetic algorithm II (NSGA-II). The optimal operation method was validated and implemented in the first-stage and second-stage pumping stations of the Zuncun Irrigation Project by lifting water from the Yellow River in Shanxi province. The results showed that the proposed optimization model can reduce the energy consumption of the CPS by 4% compared with the actual operation. In addition, the optimal operation model of the CPS coupled with simulation can realize the dynamic balance of flow by stabilizing the inlet pool level to operate within a safe range. The energy consumption of the CPS can be reduced by keeping the water level of the intake pool as high a level as possible.</p>\",\"PeriodicalId\":14848,\"journal\":{\"name\":\"Irrigation and Drainage\",\"volume\":\"73 4\",\"pages\":\"1344-1357\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Irrigation and Drainage\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ird.2944\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Irrigation and Drainage","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ird.2944","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
Research on an optimal operation model for cascade pumping stations based on simulations
Cascade pumping stations (CPS) consume a large amount of energy every year in lifting districts. To obtain a reasonable and feasible operation scheme for CPS, this paper proposes an optimal operation model for CPS based on simulations. A one-dimensional unsteady flow model of open canals was coupled with the optimal operation model of CPS, and an energy-dominated optimization was proposed with the water level of the inlet pool as the coordinated variable. The optimization model was solved by using the catch-up method and the nondominated sorted genetic algorithm II (NSGA-II). The optimal operation method was validated and implemented in the first-stage and second-stage pumping stations of the Zuncun Irrigation Project by lifting water from the Yellow River in Shanxi province. The results showed that the proposed optimization model can reduce the energy consumption of the CPS by 4% compared with the actual operation. In addition, the optimal operation model of the CPS coupled with simulation can realize the dynamic balance of flow by stabilizing the inlet pool level to operate within a safe range. The energy consumption of the CPS can be reduced by keeping the water level of the intake pool as high a level as possible.
期刊介绍:
Human intervention in the control of water for sustainable agricultural development involves the application of technology and management approaches to: (i) provide the appropriate quantities of water when it is needed by the crops, (ii) prevent salinisation and water-logging of the root zone, (iii) protect land from flooding, and (iv) maximise the beneficial use of water by appropriate allocation, conservation and reuse. All this has to be achieved within a framework of economic, social and environmental constraints. The Journal, therefore, covers a wide range of subjects, advancement in which, through high quality papers in the Journal, will make a significant contribution to the enormous task of satisfying the needs of the world’s ever-increasing population. The Journal also publishes book reviews.