{"title":"使用基于特征集成的 cnn 架构对内窥镜图像进行分类","authors":"Hüseyin Üzen, Hüseyin Fırat","doi":"10.17780/ksujes.1362792","DOIUrl":null,"url":null,"abstract":"Derin öğrenme (DL) tekniklerindeki son gelişmeler, tıbbi görüntüler kullanılarak gastrointestinal (GI) hastalıkların sınıflandırılmasını otomatikleştirmek için umut verici bir potansiyel göstermektedir. Zamanında ve kesin teşhis, tedavi etkinliğini önemli ölçüde etkilemektedir. Bu araştırma, GI hastalıklarını tanımlamak için yeni bir DL tabanlı modeli tanıtmaktadır. Bu model, önceden eğitilmiş ağ mimarilerinin ara katmanlarından elde edilen öznitelikleri birleştirerek sınıflandırma işlemini gerçekleştirmektedir. Öznitelik entegrasyonuna dayalı evrişimsel sinir ağı (ESA) olarak adlandırılan bu modelde, endoskopik görüntüleri sınıflandırmak için önceden eğitilmiş ağ mimarilerinin yüksek ve düşük seviyeli öznitelikleri birleştirilerek nihai öznitelik haritası elde edilmektedir. Daha sonra bu öznitelik haritası sınıflandırma için kullanılmaktadır. Kvasirv2 veri seti kullanılarak yapılan deneysel analizler sonucunda, önerilen model ile başarılı bir performans elde edilmiştir. Özellikle, DenseNet201 modelinin ara katmanlarındaki özelliklerin birleştirilmesi, sırasıyla %94.25, %94.28, %94.24 ve %94.24 doğruluk, kesinlik, duyarlılık ve F1 puanı ile sonuçlanmıştır. Diğer ESA tabanlı önceden eğitilmiş modellerle ve son çalışmalarla yapılan karşılaştırmalı analizler, önerilen modelin üstünlüğünü ortaya koymuş ve doğruluğu %94.25'e yükseltmiştir. Bu, endoskopik görüntülerden GI hastalık tespitinde gelişmiş sınıflandırma doğruluğu için DenseNet201'in ara katmanlarındaki özelliklerden yararlanma potansiyelinin altını çizmektedir.","PeriodicalId":508025,"journal":{"name":"Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi","volume":"73 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CLASSIFICATION OF ENDOSCOPIC IMAGES USING CNN ARCHITECTURE BASED ON FEATURE INTEGRATION\",\"authors\":\"Hüseyin Üzen, Hüseyin Fırat\",\"doi\":\"10.17780/ksujes.1362792\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Derin öğrenme (DL) tekniklerindeki son gelişmeler, tıbbi görüntüler kullanılarak gastrointestinal (GI) hastalıkların sınıflandırılmasını otomatikleştirmek için umut verici bir potansiyel göstermektedir. Zamanında ve kesin teşhis, tedavi etkinliğini önemli ölçüde etkilemektedir. Bu araştırma, GI hastalıklarını tanımlamak için yeni bir DL tabanlı modeli tanıtmaktadır. Bu model, önceden eğitilmiş ağ mimarilerinin ara katmanlarından elde edilen öznitelikleri birleştirerek sınıflandırma işlemini gerçekleştirmektedir. Öznitelik entegrasyonuna dayalı evrişimsel sinir ağı (ESA) olarak adlandırılan bu modelde, endoskopik görüntüleri sınıflandırmak için önceden eğitilmiş ağ mimarilerinin yüksek ve düşük seviyeli öznitelikleri birleştirilerek nihai öznitelik haritası elde edilmektedir. Daha sonra bu öznitelik haritası sınıflandırma için kullanılmaktadır. Kvasirv2 veri seti kullanılarak yapılan deneysel analizler sonucunda, önerilen model ile başarılı bir performans elde edilmiştir. Özellikle, DenseNet201 modelinin ara katmanlarındaki özelliklerin birleştirilmesi, sırasıyla %94.25, %94.28, %94.24 ve %94.24 doğruluk, kesinlik, duyarlılık ve F1 puanı ile sonuçlanmıştır. Diğer ESA tabanlı önceden eğitilmiş modellerle ve son çalışmalarla yapılan karşılaştırmalı analizler, önerilen modelin üstünlüğünü ortaya koymuş ve doğruluğu %94.25'e yükseltmiştir. Bu, endoskopik görüntülerden GI hastalık tespitinde gelişmiş sınıflandırma doğruluğu için DenseNet201'in ara katmanlarındaki özelliklerden yararlanma potansiyelinin altını çizmektedir.\",\"PeriodicalId\":508025,\"journal\":{\"name\":\"Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi\",\"volume\":\"73 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17780/ksujes.1362792\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17780/ksujes.1362792","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
深度学习(DL)技术的最新进展表明,利用医学图像对胃肠道(GI)疾病进行自动分类大有可为。及时准确的诊断对治疗效果有着重要影响。本研究介绍了一种基于 DL 的新型胃肠道疾病识别模型。该模型通过结合从预先训练的网络架构中间层获得的特征来执行分类过程。在这个被称为基于特征整合的卷积神经网络(ESA)的模型中,预先训练的网络架构的高层和低层特征被组合起来,以获得用于内窥镜图像分类的最终特征图。然后使用该特征图进行分类。使用 Kvasirv2 数据集进行实验分析的结果表明,所提出的模型取得了成功的性能。特别是,在 DenseNet201 模型的中间层融合特征后,准确度、精确度、灵敏度和 F1 分数分别达到 94.25%、94.28%、94.24% 和 94.24%。与其他基于 ESA 的预训练模型和近期研究的对比分析表明,所提出的模型更胜一筹,准确率提高到了 94.25%。这凸显了利用 DenseNet201 中间层的特征提高内窥镜图像消化道疾病检测分类准确率的潜力。
CLASSIFICATION OF ENDOSCOPIC IMAGES USING CNN ARCHITECTURE BASED ON FEATURE INTEGRATION
Derin öğrenme (DL) tekniklerindeki son gelişmeler, tıbbi görüntüler kullanılarak gastrointestinal (GI) hastalıkların sınıflandırılmasını otomatikleştirmek için umut verici bir potansiyel göstermektedir. Zamanında ve kesin teşhis, tedavi etkinliğini önemli ölçüde etkilemektedir. Bu araştırma, GI hastalıklarını tanımlamak için yeni bir DL tabanlı modeli tanıtmaktadır. Bu model, önceden eğitilmiş ağ mimarilerinin ara katmanlarından elde edilen öznitelikleri birleştirerek sınıflandırma işlemini gerçekleştirmektedir. Öznitelik entegrasyonuna dayalı evrişimsel sinir ağı (ESA) olarak adlandırılan bu modelde, endoskopik görüntüleri sınıflandırmak için önceden eğitilmiş ağ mimarilerinin yüksek ve düşük seviyeli öznitelikleri birleştirilerek nihai öznitelik haritası elde edilmektedir. Daha sonra bu öznitelik haritası sınıflandırma için kullanılmaktadır. Kvasirv2 veri seti kullanılarak yapılan deneysel analizler sonucunda, önerilen model ile başarılı bir performans elde edilmiştir. Özellikle, DenseNet201 modelinin ara katmanlarındaki özelliklerin birleştirilmesi, sırasıyla %94.25, %94.28, %94.24 ve %94.24 doğruluk, kesinlik, duyarlılık ve F1 puanı ile sonuçlanmıştır. Diğer ESA tabanlı önceden eğitilmiş modellerle ve son çalışmalarla yapılan karşılaştırmalı analizler, önerilen modelin üstünlüğünü ortaya koymuş ve doğruluğu %94.25'e yükseltmiştir. Bu, endoskopik görüntülerden GI hastalık tespitinde gelişmiş sınıflandırma doğruluğu için DenseNet201'in ara katmanlarındaki özelliklerden yararlanma potansiyelinin altını çizmektedir.