信贷消费估算及与时间序列估算算法的比较应用

Hakan Akçay, Derya Yiltas-Kaplan
{"title":"信贷消费估算及与时间序列估算算法的比较应用","authors":"Hakan Akçay, Derya Yiltas-Kaplan","doi":"10.17780/ksujes.1369811","DOIUrl":null,"url":null,"abstract":"Dijital dönüşümün hızla yaygınlaşması ile işlenen verilerin boyutları ve hacimleri de artmıştır. Büyük verileri işlemek, doğruluğu yüksek analizleri kısa sürede ve daha az kaynak kullanarak yapmak için yeni yöntem ve algoritmalar geliştirilmiştir. Bu çalışmada makine öğrenmesi ve derin öğrenme tekniklerinden ARIMA (Otoregresif Entegre Hareketli Ortalama), SARIMA (Mevsimsel ARIMA), Prophet (Facebook), XGBoost (En Büyük Eğim Artırma), LSTM (Uzun-Kısa Süreli Bellek), RNN (Yinelemeli Sinir Ağı) ve GRU (Geçitli Tekrarlayan Birim) algoritmaları kullanılarak tüketicilerin kontör tüketimleri zaman serileri yardımıyla tahmin edilmeye çalışılmıştır. Modelleri karşılaştırmak için MAE (Ortalama Mutlak Hata), MAPE (Ortalama Mutlak Yüzde Hata), RMSE (Kök Ortalama Karesel Hata) ve Determinasyon Katsayısı (R^2) kullanılmıştır. Elde edilen ölçüm sonuçlarına göre zaman serileri tahminlemesinde derin öğrenme tekniklerinin makine öğrenmesi yöntemlerine göre daha iyi sonuçlar verdiği gözlemlenmiştir. Çalışmada zaman serileri tahminlemesi üzerine dokuz farklı makine ve derin öğrenme yöntemi kullanılarak kapsamlı bir inceleme yapılmıştır. Literatürdeki benzer çalışmalar ile kıyaslandığında bu çalışmada konu oldukça geniş bir perspektiften incelenmiştir.","PeriodicalId":508025,"journal":{"name":"Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi","volume":"69 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CREDIT CONSUMPTION ESTIMATION AND COMPARATIVE APPLICATION WITH TIME SERIES ESTIMATION ALGORITHMS\",\"authors\":\"Hakan Akçay, Derya Yiltas-Kaplan\",\"doi\":\"10.17780/ksujes.1369811\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dijital dönüşümün hızla yaygınlaşması ile işlenen verilerin boyutları ve hacimleri de artmıştır. Büyük verileri işlemek, doğruluğu yüksek analizleri kısa sürede ve daha az kaynak kullanarak yapmak için yeni yöntem ve algoritmalar geliştirilmiştir. Bu çalışmada makine öğrenmesi ve derin öğrenme tekniklerinden ARIMA (Otoregresif Entegre Hareketli Ortalama), SARIMA (Mevsimsel ARIMA), Prophet (Facebook), XGBoost (En Büyük Eğim Artırma), LSTM (Uzun-Kısa Süreli Bellek), RNN (Yinelemeli Sinir Ağı) ve GRU (Geçitli Tekrarlayan Birim) algoritmaları kullanılarak tüketicilerin kontör tüketimleri zaman serileri yardımıyla tahmin edilmeye çalışılmıştır. Modelleri karşılaştırmak için MAE (Ortalama Mutlak Hata), MAPE (Ortalama Mutlak Yüzde Hata), RMSE (Kök Ortalama Karesel Hata) ve Determinasyon Katsayısı (R^2) kullanılmıştır. Elde edilen ölçüm sonuçlarına göre zaman serileri tahminlemesinde derin öğrenme tekniklerinin makine öğrenmesi yöntemlerine göre daha iyi sonuçlar verdiği gözlemlenmiştir. Çalışmada zaman serileri tahminlemesi üzerine dokuz farklı makine ve derin öğrenme yöntemi kullanılarak kapsamlı bir inceleme yapılmıştır. Literatürdeki benzer çalışmalar ile kıyaslandığında bu çalışmada konu oldukça geniş bir perspektiften incelenmiştir.\",\"PeriodicalId\":508025,\"journal\":{\"name\":\"Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi\",\"volume\":\"69 8\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17780/ksujes.1369811\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17780/ksujes.1369811","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着数字化转型的迅速普及,处理数据的规模和数量也在增加。人们开发了新的方法和算法来处理大数据,并在短时间内利用更少的资源进行高精度分析。本研究采用机器学习和深度学习技术中的 ARIMA(自回归整合移动平均)、SARIMA(季节性 ARIMA)、Prophet(Facebook)、XGBoost(最大斜率提升)、LSTM(长短期记忆)、RNN(递归神经网络)和 GRU(门控递归单元)算法来预测消费者的充值消费时间序列。采用 MAE(平均绝对误差)、MAPE(平均绝对百分比误差)、RMSE(均方根误差)和判定系数(R^2)对模型进行比较。根据测量结果,深度学习技术在时间序列预测方面比机器学习方法效果更好。本研究使用九种不同的机器学习和深度学习方法对时间序列预测进行了全面回顾。与文献中的类似研究相比,本研究从一个非常广阔的视角审视了这一主题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CREDIT CONSUMPTION ESTIMATION AND COMPARATIVE APPLICATION WITH TIME SERIES ESTIMATION ALGORITHMS
Dijital dönüşümün hızla yaygınlaşması ile işlenen verilerin boyutları ve hacimleri de artmıştır. Büyük verileri işlemek, doğruluğu yüksek analizleri kısa sürede ve daha az kaynak kullanarak yapmak için yeni yöntem ve algoritmalar geliştirilmiştir. Bu çalışmada makine öğrenmesi ve derin öğrenme tekniklerinden ARIMA (Otoregresif Entegre Hareketli Ortalama), SARIMA (Mevsimsel ARIMA), Prophet (Facebook), XGBoost (En Büyük Eğim Artırma), LSTM (Uzun-Kısa Süreli Bellek), RNN (Yinelemeli Sinir Ağı) ve GRU (Geçitli Tekrarlayan Birim) algoritmaları kullanılarak tüketicilerin kontör tüketimleri zaman serileri yardımıyla tahmin edilmeye çalışılmıştır. Modelleri karşılaştırmak için MAE (Ortalama Mutlak Hata), MAPE (Ortalama Mutlak Yüzde Hata), RMSE (Kök Ortalama Karesel Hata) ve Determinasyon Katsayısı (R^2) kullanılmıştır. Elde edilen ölçüm sonuçlarına göre zaman serileri tahminlemesinde derin öğrenme tekniklerinin makine öğrenmesi yöntemlerine göre daha iyi sonuçlar verdiği gözlemlenmiştir. Çalışmada zaman serileri tahminlemesi üzerine dokuz farklı makine ve derin öğrenme yöntemi kullanılarak kapsamlı bir inceleme yapılmıştır. Literatürdeki benzer çalışmalar ile kıyaslandığında bu çalışmada konu oldukça geniş bir perspektiften incelenmiştir.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PİRAZOL TÜREVI BİR BİLEŞİĞİN KURAMSAL HESAPLAMALARI VE HİRSHFELD YÜZEY ANALİZİ GÜNCEL SANATTA BİR ÜRETİM BİÇİMİ OLARAK ÇEKİŞMELİ ÜRETKEN AĞLAR BENTONİT KUM KARIŞIMLARINDA ELASTİK DRENAJSIZ MODUL-SERBEST BASINÇ MUKAVEMETİ İLİŞKİSİ MULTİSPEKTRAL VE HİPERSPEKTRAL GÖRÜNTÜLEME TEKNİKLERİNİN MEYVE - SEBZE İŞLEME TESİSLERİNDE KULLANIM OLANAKLARI A DEEP LEARNING-BASED DEMAND FORECASTING SYSTEM FOR PLANNING ELECTRICITY GENERATION
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1