基于 CT 扫描的孔隙结构异质性对重油油藏热水淹没过程中通道的影响

IF 6 1区 工程技术 Q2 ENERGY & FUELS Petroleum Science Pub Date : 2024-08-01 DOI:10.1016/j.petsci.2024.03.014
{"title":"基于 CT 扫描的孔隙结构异质性对重油油藏热水淹没过程中通道的影响","authors":"","doi":"10.1016/j.petsci.2024.03.014","DOIUrl":null,"url":null,"abstract":"<div><p>Hot water flooding is an effective way to develop heavy oil reservoirs. However, local channeling channels may form, possibly leading to a low thermal utilization efficiency and high water cut in the reservoir. The pore structure heterogeneity is an important factor in forming these channels. This study proposes a method that mixes quartz sand with different particle sizes to prepare weakly heterogeneous and strongly heterogeneous models through which hot water flooding experiments are conducted. During the experiments, computer tomography (CT) scanning identifies the pore structure and micro remaining oil saturation distribution to analyze the influence of the pore structure heterogeneity on the channeling channels. The oil saturation reduction and average pore size are divided into three levels to quantitatively describe the relationship between the channeling channel distribution and pore structure heterogeneity. The zone where oil saturation reduction exceeds 20% is defined as a channeling channel. The scanning area is divided into 180 equally sized zones based on the CT scanning images, and three-dimensional (3D) distributions of the channeling channels are developed. Four micro remaining oil distribution patterns are proposed, and the morphology characteristics of micro remaining oil inside and outside the channeling channels are analyzed. The results show that hot water flooding is more balanced in the weakly heterogeneous model, and the oil saturation decreases by more than 20% in most zones without narrow channeling channels forming. In the strongly heterogeneous model, hot water flooding is unbalanced, and three narrow channeling channels of different lengths form. In the weakly heterogeneous model, the oil saturation reduction is greater in zones with larger pores. The distribution range of the average pore size is larger in the strongly heterogeneous model. The network remaining oil inside the channeling channels is less than outside the channeling channels, and the hot water converts the network remaining oil into cluster, film, and droplet remaining oil.</p></div>","PeriodicalId":19938,"journal":{"name":"Petroleum Science","volume":"21 4","pages":"Pages 2407-2419"},"PeriodicalIF":6.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1995822624000694/pdfft?md5=6272fbb16f1c4681ac64311eed1c9c04&pid=1-s2.0-S1995822624000694-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Influence of pore structure heterogeneity on channeling channels during hot water flooding in heavy oil reservoir based on CT scanning\",\"authors\":\"\",\"doi\":\"10.1016/j.petsci.2024.03.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Hot water flooding is an effective way to develop heavy oil reservoirs. However, local channeling channels may form, possibly leading to a low thermal utilization efficiency and high water cut in the reservoir. The pore structure heterogeneity is an important factor in forming these channels. This study proposes a method that mixes quartz sand with different particle sizes to prepare weakly heterogeneous and strongly heterogeneous models through which hot water flooding experiments are conducted. During the experiments, computer tomography (CT) scanning identifies the pore structure and micro remaining oil saturation distribution to analyze the influence of the pore structure heterogeneity on the channeling channels. The oil saturation reduction and average pore size are divided into three levels to quantitatively describe the relationship between the channeling channel distribution and pore structure heterogeneity. The zone where oil saturation reduction exceeds 20% is defined as a channeling channel. The scanning area is divided into 180 equally sized zones based on the CT scanning images, and three-dimensional (3D) distributions of the channeling channels are developed. Four micro remaining oil distribution patterns are proposed, and the morphology characteristics of micro remaining oil inside and outside the channeling channels are analyzed. The results show that hot water flooding is more balanced in the weakly heterogeneous model, and the oil saturation decreases by more than 20% in most zones without narrow channeling channels forming. In the strongly heterogeneous model, hot water flooding is unbalanced, and three narrow channeling channels of different lengths form. In the weakly heterogeneous model, the oil saturation reduction is greater in zones with larger pores. The distribution range of the average pore size is larger in the strongly heterogeneous model. The network remaining oil inside the channeling channels is less than outside the channeling channels, and the hot water converts the network remaining oil into cluster, film, and droplet remaining oil.</p></div>\",\"PeriodicalId\":19938,\"journal\":{\"name\":\"Petroleum Science\",\"volume\":\"21 4\",\"pages\":\"Pages 2407-2419\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1995822624000694/pdfft?md5=6272fbb16f1c4681ac64311eed1c9c04&pid=1-s2.0-S1995822624000694-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Petroleum Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1995822624000694\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1995822624000694","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

热水淹没是开发重油油藏的一种有效方法。然而,可能会形成局部通道,从而导致热利用效率低和储层断水率高。孔隙结构异质性是形成这些通道的重要因素。本研究提出了一种方法,将不同粒径的石英砂混合,制备出弱异质和强异质模型,并通过这些模型进行热水淹没实验。在实验过程中,通过计算机断层扫描(CT)确定孔隙结构和微量剩余油饱和度分布,分析孔隙结构异质性对通道的影响。油饱和度降低和平均孔径大小被分为三个等级,以定量描述导流通道分布与孔隙结构异质性之间的关系。石油饱和度降低超过 20% 的区域被定义为沟道。根据 CT 扫描图像将扫描区域划分为 180 个大小相等的区域,并绘制出通道的三维(3D)分布图。提出了四种微量剩余油分布模式,并分析了沟道内外微量剩余油的形态特征。结果表明,在弱异质模型中,热水淹没比较均衡,大部分区域的油饱和度下降了 20% 以上,没有形成狭窄的导流槽。在强异质模型中,热水泛滥不平衡,形成了三条不同长度的狭窄渠道。在弱异质模型中,孔隙较大的区域油饱和度降低幅度更大。在强异质模型中,平均孔径的分布范围更大。沟道内的网状剩余油少于沟道外,热水将网状剩余油转化为团状、膜状和液滴状剩余油。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Influence of pore structure heterogeneity on channeling channels during hot water flooding in heavy oil reservoir based on CT scanning

Hot water flooding is an effective way to develop heavy oil reservoirs. However, local channeling channels may form, possibly leading to a low thermal utilization efficiency and high water cut in the reservoir. The pore structure heterogeneity is an important factor in forming these channels. This study proposes a method that mixes quartz sand with different particle sizes to prepare weakly heterogeneous and strongly heterogeneous models through which hot water flooding experiments are conducted. During the experiments, computer tomography (CT) scanning identifies the pore structure and micro remaining oil saturation distribution to analyze the influence of the pore structure heterogeneity on the channeling channels. The oil saturation reduction and average pore size are divided into three levels to quantitatively describe the relationship between the channeling channel distribution and pore structure heterogeneity. The zone where oil saturation reduction exceeds 20% is defined as a channeling channel. The scanning area is divided into 180 equally sized zones based on the CT scanning images, and three-dimensional (3D) distributions of the channeling channels are developed. Four micro remaining oil distribution patterns are proposed, and the morphology characteristics of micro remaining oil inside and outside the channeling channels are analyzed. The results show that hot water flooding is more balanced in the weakly heterogeneous model, and the oil saturation decreases by more than 20% in most zones without narrow channeling channels forming. In the strongly heterogeneous model, hot water flooding is unbalanced, and three narrow channeling channels of different lengths form. In the weakly heterogeneous model, the oil saturation reduction is greater in zones with larger pores. The distribution range of the average pore size is larger in the strongly heterogeneous model. The network remaining oil inside the channeling channels is less than outside the channeling channels, and the hot water converts the network remaining oil into cluster, film, and droplet remaining oil.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Petroleum Science
Petroleum Science 地学-地球化学与地球物理
CiteScore
7.70
自引率
16.10%
发文量
311
审稿时长
63 days
期刊介绍: Petroleum Science is the only English journal in China on petroleum science and technology that is intended for professionals engaged in petroleum science research and technical applications all over the world, as well as the managerial personnel of oil companies. It covers petroleum geology, petroleum geophysics, petroleum engineering, petrochemistry & chemical engineering, petroleum mechanics, and economic management. It aims to introduce the latest results in oil industry research in China, promote cooperation in petroleum science research between China and the rest of the world, and build a bridge for scientific communication between China and the world.
期刊最新文献
Characterization of chemical composition of high viscosity heavy oils: Macroscopic properties, and semi-quantitative analysis of molecular composition using high-resolution mass spectrometry The impact of industrial transformation on green economic efficiency: New evidence based on energy use Morphological complexity and azimuthal disorder of evolving pore space in low-maturity oil shale during in-situ thermal upgrading and impacts on permeability Influence of the mechanical properties of materials on the ultimate pressure-bearing capability of a pressure-preserving controller 3D rock physics template-based probabilistic estimation of tight sandstone reservoir properties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1