用于沿海水位时空快速预测的深度学习模型

IF 4.2 2区 工程技术 Q1 ENGINEERING, CIVIL Coastal Engineering Pub Date : 2024-03-18 DOI:10.1016/j.coastaleng.2024.104504
Ali Shahabi, Navid Tahvildari
{"title":"用于沿海水位时空快速预测的深度学习模型","authors":"Ali Shahabi,&nbsp;Navid Tahvildari","doi":"10.1016/j.coastaleng.2024.104504","DOIUrl":null,"url":null,"abstract":"<div><p>With the increasing impact of climate change and relative sea level rise, low-lying coastal communities face growing risks from recurrent nuisance flooding and storm tides. Thus, timely and reliable predictions of coastal water levels are critical to resilience in vulnerable coastal areas. Over the past decade, there has been increasing interest in utilizing machine learning (ML) based models for emulation and prediction of coastal water levels. However, flood advisory systems still rely on running computationally demanding hydrodynamic models. To alleviate the computational burden, these physics-based models are either run at small scales with high resolution or at large scales with low resolution. While ML-based models are very fast, they face challenges in terms of ensuring reliability and ability to capture any surge levels. In this paper, we develop a deep neural network for spatiotemporal prediction of water levels in coastal areas of the Chesapeake Bay in the U.S. Our model relies on data from numerical weather prediction models as the atmospheric input and astronomical tide levels, while its outputs are time series of predicted water levels at several tide gauge locations across the Chesapeake Bay. We utilized a CNN-LSTM setting as the architecture of the model. The CNN part extracts the features from a sequence of gridded wind fields and fuses its output to several independent LSTM units. The LSTM units concatenate the atmospheric features with respective astronomical tide levels and produce water level time series. The novel contribution of the present work is in spatiotemporality and in prioritization of the physical relationships in the model to maintain a high analogy to hydrodynamic modeling, either in the network architecture or in the selection of predictors and predictands. The results show that this setting yields a strong performance in predicting coastal water levels that cause flooding from minor to major levels. We also show that the model stands up successfully to the rigorous comparison with a high-fidelity ADCIRC model, yielding mean RMSE and correlation coefficient of 14.3 cm and 0.94, respectively, in two extreme cases, versus 12.30 cm and 0.96 for the ADCIRC model. The results highlight the practical feasibility of employing fast yet inexpensive data-driven models for resilient coastal management.</p></div>","PeriodicalId":50996,"journal":{"name":"Coastal Engineering","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A deep-learning model for rapid spatiotemporal prediction of coastal water levels\",\"authors\":\"Ali Shahabi,&nbsp;Navid Tahvildari\",\"doi\":\"10.1016/j.coastaleng.2024.104504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>With the increasing impact of climate change and relative sea level rise, low-lying coastal communities face growing risks from recurrent nuisance flooding and storm tides. Thus, timely and reliable predictions of coastal water levels are critical to resilience in vulnerable coastal areas. Over the past decade, there has been increasing interest in utilizing machine learning (ML) based models for emulation and prediction of coastal water levels. However, flood advisory systems still rely on running computationally demanding hydrodynamic models. To alleviate the computational burden, these physics-based models are either run at small scales with high resolution or at large scales with low resolution. While ML-based models are very fast, they face challenges in terms of ensuring reliability and ability to capture any surge levels. In this paper, we develop a deep neural network for spatiotemporal prediction of water levels in coastal areas of the Chesapeake Bay in the U.S. Our model relies on data from numerical weather prediction models as the atmospheric input and astronomical tide levels, while its outputs are time series of predicted water levels at several tide gauge locations across the Chesapeake Bay. We utilized a CNN-LSTM setting as the architecture of the model. The CNN part extracts the features from a sequence of gridded wind fields and fuses its output to several independent LSTM units. The LSTM units concatenate the atmospheric features with respective astronomical tide levels and produce water level time series. The novel contribution of the present work is in spatiotemporality and in prioritization of the physical relationships in the model to maintain a high analogy to hydrodynamic modeling, either in the network architecture or in the selection of predictors and predictands. The results show that this setting yields a strong performance in predicting coastal water levels that cause flooding from minor to major levels. We also show that the model stands up successfully to the rigorous comparison with a high-fidelity ADCIRC model, yielding mean RMSE and correlation coefficient of 14.3 cm and 0.94, respectively, in two extreme cases, versus 12.30 cm and 0.96 for the ADCIRC model. The results highlight the practical feasibility of employing fast yet inexpensive data-driven models for resilient coastal management.</p></div>\",\"PeriodicalId\":50996,\"journal\":{\"name\":\"Coastal Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Coastal Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378383924000528\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coastal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378383924000528","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

随着气候变化和海平面相对上升的影响越来越大,低洼沿海社区面临的经常性洪水和风暴潮的风险也越来越大。因此,及时可靠地预测沿海水位对脆弱沿海地区的恢复能力至关重要。在过去十年中,人们越来越关注利用基于机器学习(ML)的模型来模拟和预测沿海水位。然而,洪水预警系统仍然依赖于运行计算要求很高的水动力模型。为了减轻计算负担,这些基于物理的模型要么在高分辨率的小尺度上运行,要么在低分辨率的大尺度上运行。虽然基于 ML 的模型速度非常快,但它们在确保可靠性和捕捉任何浪涌水平的能力方面面临挑战。在本文中,我们开发了一种深度神经网络,用于对美国切萨皮克湾沿海地区的水位进行时空预测。我们的模型依靠数值天气预报模型的数据作为大气输入和天文潮位,其输出则是切萨皮克湾多个验潮仪位置的预测水位时间序列。我们采用 CNN-LSTM 设置作为模型的架构。CNN 部分从网格风场序列中提取特征,并将其输出融合到多个独立的 LSTM 单元中。LSTM 单元将大气特征与各自的天文潮位进行串联,生成水位时间序列。本研究的新贡献在于时空性和模型中物理关系的优先级,以保持与水动力建模的高度相似性,无论是在网络架构还是在预测因子和预测对象的选择方面。结果表明,在预测导致小洪水到大洪水的沿岸水位时,这种设置具有很强的性能。我们还表明,该模型成功地经受住了与高保真 ADCIRC 模型的严格比较,在两个极端情况下,平均均方根误差和相关系数分别为 14.3 厘米和 0.94,而 ADCIRC 模型分别为 12.30 厘米和 0.96。这些结果凸显了采用快速而廉价的数据驱动模式进行弹性海岸管理的实际可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A deep-learning model for rapid spatiotemporal prediction of coastal water levels

With the increasing impact of climate change and relative sea level rise, low-lying coastal communities face growing risks from recurrent nuisance flooding and storm tides. Thus, timely and reliable predictions of coastal water levels are critical to resilience in vulnerable coastal areas. Over the past decade, there has been increasing interest in utilizing machine learning (ML) based models for emulation and prediction of coastal water levels. However, flood advisory systems still rely on running computationally demanding hydrodynamic models. To alleviate the computational burden, these physics-based models are either run at small scales with high resolution or at large scales with low resolution. While ML-based models are very fast, they face challenges in terms of ensuring reliability and ability to capture any surge levels. In this paper, we develop a deep neural network for spatiotemporal prediction of water levels in coastal areas of the Chesapeake Bay in the U.S. Our model relies on data from numerical weather prediction models as the atmospheric input and astronomical tide levels, while its outputs are time series of predicted water levels at several tide gauge locations across the Chesapeake Bay. We utilized a CNN-LSTM setting as the architecture of the model. The CNN part extracts the features from a sequence of gridded wind fields and fuses its output to several independent LSTM units. The LSTM units concatenate the atmospheric features with respective astronomical tide levels and produce water level time series. The novel contribution of the present work is in spatiotemporality and in prioritization of the physical relationships in the model to maintain a high analogy to hydrodynamic modeling, either in the network architecture or in the selection of predictors and predictands. The results show that this setting yields a strong performance in predicting coastal water levels that cause flooding from minor to major levels. We also show that the model stands up successfully to the rigorous comparison with a high-fidelity ADCIRC model, yielding mean RMSE and correlation coefficient of 14.3 cm and 0.94, respectively, in two extreme cases, versus 12.30 cm and 0.96 for the ADCIRC model. The results highlight the practical feasibility of employing fast yet inexpensive data-driven models for resilient coastal management.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Coastal Engineering
Coastal Engineering 工程技术-工程:大洋
CiteScore
9.20
自引率
13.60%
发文量
0
审稿时长
3.5 months
期刊介绍: Coastal Engineering is an international medium for coastal engineers and scientists. Combining practical applications with modern technological and scientific approaches, such as mathematical and numerical modelling, laboratory and field observations and experiments, it publishes fundamental studies as well as case studies on the following aspects of coastal, harbour and offshore engineering: waves, currents and sediment transport; coastal, estuarine and offshore morphology; technical and functional design of coastal and harbour structures; morphological and environmental impact of coastal, harbour and offshore structures.
期刊最新文献
An enhanced model for an extreme wave impacting a vertical cylinder An adaptive internal mass source wave-maker for short wave generation Convergence and divergence of storm waves induced by multi-scale currents: Observations and coupled wave-current modeling Wave overtopping discharges at rubble mound structures in shallow water Computations of energetic nearshore waves: Are weakly dispersive phase-resolving models telling the same story?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1