使用添加了颗粒活性炭(GAC)和 L-精氨酸的泰国梭菌进行沼气升级以生产醋酸:基因组分析方法

IF 6.4 3区 环境科学与生态学 Q2 ENERGY & FUELS Carbon Resources Conversion Pub Date : 2024-03-12 DOI:10.1016/j.crcon.2024.100236
Srisuda Chaikitkaew , Nantharat Wongfaed , Chonticha Mamimin , Sompong O-Thong , Alissara Reungsang
{"title":"使用添加了颗粒活性炭(GAC)和 L-精氨酸的泰国梭菌进行沼气升级以生产醋酸:基因组分析方法","authors":"Srisuda Chaikitkaew ,&nbsp;Nantharat Wongfaed ,&nbsp;Chonticha Mamimin ,&nbsp;Sompong O-Thong ,&nbsp;Alissara Reungsang","doi":"10.1016/j.crcon.2024.100236","DOIUrl":null,"url":null,"abstract":"<div><p>This study explores the impact of granular activated carbon (GAC) and L-arginine supplementation on biogas upgrading and acetic acid production employing <em>Clostridium thailandense</em>. GAC and L-arginine concentrations ranged from 0 to 20 g/L and 0 to 5 g/L, respectively, with H<sub>2</sub> acting as the electron donor at an H<sub>2</sub> to CO<sub>2</sub> ratio of 2:1 (v/v). Experiments were conducted at 30 °C with an agitation speed of 150 rpm. Additionally, gene annotation of the <em>C. thailandense</em> genome using Rapid Annotations using Subsystems Technology (RAST) identified genes involved in CO<sub>2</sub> to acetic acid conversion. Results indicate that adding 7.5 g/L GAC boosts CH<sub>4</sub> purity in biogas, elevating CO<sub>2</sub> and H<sub>2</sub> consumption efficiencies to 88.3 % and 98.7 %, respectively. This enhancement leads to a CH<sub>4</sub> content increase to 93.3 %, accompanied by 0.90 g/L acetic acid production. Conversely, L-arginine demonstrates no significant impact on CO<sub>2</sub> conversion. Leveraging RAST, the study identifies hydrogenase genes and NADH-dependent ferredoxin-NADP<sup>+</sup> oxidoreductase (Nfn), as crucial for heightened H<sub>2</sub> consumption efficiencies and cell growth facilitated by GAC, thus enhancing biogas upgrading efficiency in <em>C. thailandense.</em> This research provides vital insights into optimizing sustainable biogas production through strategic GAC utilization and elucidates the roles of hydrogenase genes and Nfn.</p></div>","PeriodicalId":52958,"journal":{"name":"Carbon Resources Conversion","volume":"7 4","pages":"Article 100236"},"PeriodicalIF":6.4000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2588913324000255/pdfft?md5=6757939113bd8a094177848b1d341c85&pid=1-s2.0-S2588913324000255-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Biogas upgrading towards acetic acid production using Clostridium thailandense supplemented with granular activated carbon (GAC) and L-arginine: A genomic analysis approach\",\"authors\":\"Srisuda Chaikitkaew ,&nbsp;Nantharat Wongfaed ,&nbsp;Chonticha Mamimin ,&nbsp;Sompong O-Thong ,&nbsp;Alissara Reungsang\",\"doi\":\"10.1016/j.crcon.2024.100236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study explores the impact of granular activated carbon (GAC) and L-arginine supplementation on biogas upgrading and acetic acid production employing <em>Clostridium thailandense</em>. GAC and L-arginine concentrations ranged from 0 to 20 g/L and 0 to 5 g/L, respectively, with H<sub>2</sub> acting as the electron donor at an H<sub>2</sub> to CO<sub>2</sub> ratio of 2:1 (v/v). Experiments were conducted at 30 °C with an agitation speed of 150 rpm. Additionally, gene annotation of the <em>C. thailandense</em> genome using Rapid Annotations using Subsystems Technology (RAST) identified genes involved in CO<sub>2</sub> to acetic acid conversion. Results indicate that adding 7.5 g/L GAC boosts CH<sub>4</sub> purity in biogas, elevating CO<sub>2</sub> and H<sub>2</sub> consumption efficiencies to 88.3 % and 98.7 %, respectively. This enhancement leads to a CH<sub>4</sub> content increase to 93.3 %, accompanied by 0.90 g/L acetic acid production. Conversely, L-arginine demonstrates no significant impact on CO<sub>2</sub> conversion. Leveraging RAST, the study identifies hydrogenase genes and NADH-dependent ferredoxin-NADP<sup>+</sup> oxidoreductase (Nfn), as crucial for heightened H<sub>2</sub> consumption efficiencies and cell growth facilitated by GAC, thus enhancing biogas upgrading efficiency in <em>C. thailandense.</em> This research provides vital insights into optimizing sustainable biogas production through strategic GAC utilization and elucidates the roles of hydrogenase genes and Nfn.</p></div>\",\"PeriodicalId\":52958,\"journal\":{\"name\":\"Carbon Resources Conversion\",\"volume\":\"7 4\",\"pages\":\"Article 100236\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2024-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2588913324000255/pdfft?md5=6757939113bd8a094177848b1d341c85&pid=1-s2.0-S2588913324000255-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Resources Conversion\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2588913324000255\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Resources Conversion","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2588913324000255","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了颗粒活性炭(GAC)和 L-精氨酸的补充对泰国梭菌的沼气升级和醋酸生产的影响。GAC 和 L-精氨酸的浓度分别为 0 至 20 g/L 和 0 至 5 g/L,H2 作为电子供体,H2 与 CO2 的比例为 2:1(v/v)。实验温度为 30 °C,搅拌速度为 150 rpm。此外,利用子系统快速注释技术(RAST)对泰兰菌基因组进行了基因注释,确定了参与二氧化碳转化为醋酸的基因。结果表明,添加 7.5 克/升 GAC 可提高沼气中 CH4 的纯度,将 CO2 和 H2 的消耗效率分别提高到 88.3 % 和 98.7 %。这种提高导致 CH4 含量增加到 93.3%,同时醋酸产量为 0.90 克/升。相反,L-精氨酸对二氧化碳转化没有显著影响。利用 RAST,该研究确定了氢酶基因和 NADH 依赖性铁氧还蛋白-NADP+氧化还原酶(Nfn),它们对提高 H2 消耗效率和 GAC 促进细胞生长至关重要,从而提高了泰国鹅膏菌的沼气升级效率。这项研究为通过战略性利用 GAC 优化可持续沼气生产提供了重要见解,并阐明了氢酶基因和 Nfn 的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Biogas upgrading towards acetic acid production using Clostridium thailandense supplemented with granular activated carbon (GAC) and L-arginine: A genomic analysis approach

This study explores the impact of granular activated carbon (GAC) and L-arginine supplementation on biogas upgrading and acetic acid production employing Clostridium thailandense. GAC and L-arginine concentrations ranged from 0 to 20 g/L and 0 to 5 g/L, respectively, with H2 acting as the electron donor at an H2 to CO2 ratio of 2:1 (v/v). Experiments were conducted at 30 °C with an agitation speed of 150 rpm. Additionally, gene annotation of the C. thailandense genome using Rapid Annotations using Subsystems Technology (RAST) identified genes involved in CO2 to acetic acid conversion. Results indicate that adding 7.5 g/L GAC boosts CH4 purity in biogas, elevating CO2 and H2 consumption efficiencies to 88.3 % and 98.7 %, respectively. This enhancement leads to a CH4 content increase to 93.3 %, accompanied by 0.90 g/L acetic acid production. Conversely, L-arginine demonstrates no significant impact on CO2 conversion. Leveraging RAST, the study identifies hydrogenase genes and NADH-dependent ferredoxin-NADP+ oxidoreductase (Nfn), as crucial for heightened H2 consumption efficiencies and cell growth facilitated by GAC, thus enhancing biogas upgrading efficiency in C. thailandense. This research provides vital insights into optimizing sustainable biogas production through strategic GAC utilization and elucidates the roles of hydrogenase genes and Nfn.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Carbon Resources Conversion
Carbon Resources Conversion Materials Science-Materials Science (miscellaneous)
CiteScore
9.90
自引率
11.70%
发文量
36
审稿时长
10 weeks
期刊介绍: Carbon Resources Conversion (CRC) publishes fundamental studies and industrial developments regarding relevant technologies aiming for the clean, efficient, value-added, and low-carbon utilization of carbon-containing resources as fuel for energy and as feedstock for materials or chemicals from, for example, fossil fuels, biomass, syngas, CO2, hydrocarbons, and organic wastes via physical, thermal, chemical, biological, and other technical methods. CRC also publishes scientific and engineering studies on resource characterization and pretreatment, carbon material innovation and production, clean technologies related to carbon resource conversion and utilization, and various process-supporting technologies, including on-line or off-line measurement and monitoring, modeling, simulations focused on safe and efficient process operation and control, and process and equipment optimization.
期刊最新文献
Outside Front Cover Outside Back Cover Developments and challenges on enhancement of photocatalytic CO2 reduction through photocatalysis Outside Front Cover Outside Back Cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1