{"title":"地震各向异性的主要研究方法","authors":"","doi":"10.1016/j.eqrea.2024.100295","DOIUrl":null,"url":null,"abstract":"<div><p>Seismic anisotropy reveals that seismic wave velocity, amplitude, and other physical properties show variations in different directions, which can be divided into lattice-preferred orientation (LPO) and shape-preferred orientation (SPO) according to its physical mechanisms. The main methods for studying seismic anisotropy include shear-wave splitting analysis, P-wave travel time inversion and surface-wave tomography, etc. There are some differences and correlations among these methods. Seismic anisotropy is an important way to reveal the dynamic processes of crust-mantle evolution, and it is significant for monitoring crustal stress changes and improve seismic exploration studies. With the help of long-term observation, the application of machine learning techniques and combining inversion based on multiple phases would become potential developments in seismic anisotropy studies. This may improve the understanding of complex seismic anisotropic models, such as multiple layers anisotropy with an oblique axis of symmetry.</p></div>","PeriodicalId":100384,"journal":{"name":"Earthquake Research Advances","volume":"4 3","pages":"Article 100295"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772467024000216/pdfft?md5=322d6aa1be9e35e6c23896e701240e8d&pid=1-s2.0-S2772467024000216-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Major methods of seismic anisotropy\",\"authors\":\"\",\"doi\":\"10.1016/j.eqrea.2024.100295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Seismic anisotropy reveals that seismic wave velocity, amplitude, and other physical properties show variations in different directions, which can be divided into lattice-preferred orientation (LPO) and shape-preferred orientation (SPO) according to its physical mechanisms. The main methods for studying seismic anisotropy include shear-wave splitting analysis, P-wave travel time inversion and surface-wave tomography, etc. There are some differences and correlations among these methods. Seismic anisotropy is an important way to reveal the dynamic processes of crust-mantle evolution, and it is significant for monitoring crustal stress changes and improve seismic exploration studies. With the help of long-term observation, the application of machine learning techniques and combining inversion based on multiple phases would become potential developments in seismic anisotropy studies. This may improve the understanding of complex seismic anisotropic models, such as multiple layers anisotropy with an oblique axis of symmetry.</p></div>\",\"PeriodicalId\":100384,\"journal\":{\"name\":\"Earthquake Research Advances\",\"volume\":\"4 3\",\"pages\":\"Article 100295\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772467024000216/pdfft?md5=322d6aa1be9e35e6c23896e701240e8d&pid=1-s2.0-S2772467024000216-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earthquake Research Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772467024000216\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthquake Research Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772467024000216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Seismic anisotropy reveals that seismic wave velocity, amplitude, and other physical properties show variations in different directions, which can be divided into lattice-preferred orientation (LPO) and shape-preferred orientation (SPO) according to its physical mechanisms. The main methods for studying seismic anisotropy include shear-wave splitting analysis, P-wave travel time inversion and surface-wave tomography, etc. There are some differences and correlations among these methods. Seismic anisotropy is an important way to reveal the dynamic processes of crust-mantle evolution, and it is significant for monitoring crustal stress changes and improve seismic exploration studies. With the help of long-term observation, the application of machine learning techniques and combining inversion based on multiple phases would become potential developments in seismic anisotropy studies. This may improve the understanding of complex seismic anisotropic models, such as multiple layers anisotropy with an oblique axis of symmetry.