地震各向异性的主要研究方法

{"title":"地震各向异性的主要研究方法","authors":"","doi":"10.1016/j.eqrea.2024.100295","DOIUrl":null,"url":null,"abstract":"<div><p>Seismic anisotropy reveals that seismic wave velocity, amplitude, and other physical properties show variations in different directions, which can be divided into lattice-preferred orientation (LPO) and shape-preferred orientation (SPO) according to its physical mechanisms. The main methods for studying seismic anisotropy include shear-wave splitting analysis, P-wave travel time inversion and surface-wave tomography, etc. There are some differences and correlations among these methods. Seismic anisotropy is an important way to reveal the dynamic processes of crust-mantle evolution, and it is significant for monitoring crustal stress changes and improve seismic exploration studies. With the help of long-term observation, the application of machine learning techniques and combining inversion based on multiple phases would become potential developments in seismic anisotropy studies. This may improve the understanding of complex seismic anisotropic models, such as multiple layers anisotropy with an oblique axis of symmetry.</p></div>","PeriodicalId":100384,"journal":{"name":"Earthquake Research Advances","volume":"4 3","pages":"Article 100295"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772467024000216/pdfft?md5=322d6aa1be9e35e6c23896e701240e8d&pid=1-s2.0-S2772467024000216-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Major methods of seismic anisotropy\",\"authors\":\"\",\"doi\":\"10.1016/j.eqrea.2024.100295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Seismic anisotropy reveals that seismic wave velocity, amplitude, and other physical properties show variations in different directions, which can be divided into lattice-preferred orientation (LPO) and shape-preferred orientation (SPO) according to its physical mechanisms. The main methods for studying seismic anisotropy include shear-wave splitting analysis, P-wave travel time inversion and surface-wave tomography, etc. There are some differences and correlations among these methods. Seismic anisotropy is an important way to reveal the dynamic processes of crust-mantle evolution, and it is significant for monitoring crustal stress changes and improve seismic exploration studies. With the help of long-term observation, the application of machine learning techniques and combining inversion based on multiple phases would become potential developments in seismic anisotropy studies. This may improve the understanding of complex seismic anisotropic models, such as multiple layers anisotropy with an oblique axis of symmetry.</p></div>\",\"PeriodicalId\":100384,\"journal\":{\"name\":\"Earthquake Research Advances\",\"volume\":\"4 3\",\"pages\":\"Article 100295\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772467024000216/pdfft?md5=322d6aa1be9e35e6c23896e701240e8d&pid=1-s2.0-S2772467024000216-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earthquake Research Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772467024000216\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthquake Research Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772467024000216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

地震各向异性揭示了地震波速度、振幅和其他物理性质在不同方向上的变化,按其物理机制可分为晶格偏好方位(LPO)和形状偏好方位(SPO)。研究地震各向异性的主要方法有剪切波分裂分析法、P 波旅行时间反演法和面波层析成像法等。这些方法之间存在一些差异和关联。地震各向异性是揭示地壳-地幔动态演化过程的重要途径,对监测地壳应力变化和改进地震勘探研究具有重要意义。在长期观测的帮助下,机器学习技术的应用和基于多相的组合反演将成为地震各向异性研究的潜在发展方向。这可能会提高对复杂地震各向异性模型的理解,如具有斜对称轴的多层各向异性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Major methods of seismic anisotropy

Seismic anisotropy reveals that seismic wave velocity, amplitude, and other physical properties show variations in different directions, which can be divided into lattice-preferred orientation (LPO) and shape-preferred orientation (SPO) according to its physical mechanisms. The main methods for studying seismic anisotropy include shear-wave splitting analysis, P-wave travel time inversion and surface-wave tomography, etc. There are some differences and correlations among these methods. Seismic anisotropy is an important way to reveal the dynamic processes of crust-mantle evolution, and it is significant for monitoring crustal stress changes and improve seismic exploration studies. With the help of long-term observation, the application of machine learning techniques and combining inversion based on multiple phases would become potential developments in seismic anisotropy studies. This may improve the understanding of complex seismic anisotropic models, such as multiple layers anisotropy with an oblique axis of symmetry.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
0
期刊最新文献
Site classification methodology using support vector machine: A study Improving image accuracy of ambient noise data by temporary seismic arrays at different observation periods Data merging methods for S-wave velocity and azimuthal anisotropy from different regions Characterization and application of submarine seismic ambient noise in the Bohai Sea and Yellow Sea Rapid determination of source parameters of the M6.2 Jishishan earthquake in Gansu Province and its application in emergency response
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1