S. Yuvaraj, P. Aji Udhaya, S. Deepa, M. Sundararajan, R. Jothiramalingam, H. Al-Lohedan, H. Al-Sigh, A. A. Nazeer
{"title":"微波辅助燃烧法合成 La2-xAlxCuO4 (0 ≤ x ≤ 0.25) 包晶纳米粒子并探索其结构、磁性、形貌和光学特性","authors":"S. Yuvaraj, P. Aji Udhaya, S. Deepa, M. Sundararajan, R. Jothiramalingam, H. Al-Lohedan, H. Al-Sigh, A. A. Nazeer","doi":"10.15251/jor.2024.202.143","DOIUrl":null,"url":null,"abstract":"La2CuO4 perovskite nanoparticles doped with aluminum were synthesized through the microwave-assisted combustion technique. Comprehensive studies on the structural, magnetic optical, functional and morphological properties were conducted using various techniques, including XRD, EDX, VSM, DRS-UV, FT-IR and FESEM respectively, .The XRD patterns of pristine La2CuO4 and Al-doped La2CuO4 unequivocally validated the exclusive development of a perovskite structure, devoid of any impurities. Nevertheless, the augmentation in Al3+ content (x = 0–0.25) induced a noteworthy phase shift from orthorhombic to cubic configuration. The average crystallite dimensions spanned from 54 to 41 nm. Distinct FT-IR bands at approximately 687 and 434 cm-1 were intricately linked to the La-O and Cu-O stretching modes inherent to the orthorhombic La2CuO4 phase. The energy gap determined through the Kubelka–Munk (K–M) methodology, experienced an elevation concomitant with the heightened Al3+ content (1.67–1.72 eV), attributable to quantum confinement phenomena. Within the La2-xAlxCuO4 (x = 0 to 0.25) system, the genesis of nanoscaled crystallized grains, interspersed with pores resulting from the amalgamation of grains, was evident. Analysis of hysteresis curves unveiled the emergence of soft ferromagnetic behavior at ambient temperature.","PeriodicalId":54394,"journal":{"name":"Journal of Ovonic Research","volume":"165 ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis and Exploring structural, magnetic, morphology and optical properties of La2−xAlxCuO4 (0 ≤ x ≤ 0.25) perovskite nanoparticles by microwave-assisted combustion method\",\"authors\":\"S. Yuvaraj, P. Aji Udhaya, S. Deepa, M. Sundararajan, R. Jothiramalingam, H. Al-Lohedan, H. Al-Sigh, A. A. Nazeer\",\"doi\":\"10.15251/jor.2024.202.143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"La2CuO4 perovskite nanoparticles doped with aluminum were synthesized through the microwave-assisted combustion technique. Comprehensive studies on the structural, magnetic optical, functional and morphological properties were conducted using various techniques, including XRD, EDX, VSM, DRS-UV, FT-IR and FESEM respectively, .The XRD patterns of pristine La2CuO4 and Al-doped La2CuO4 unequivocally validated the exclusive development of a perovskite structure, devoid of any impurities. Nevertheless, the augmentation in Al3+ content (x = 0–0.25) induced a noteworthy phase shift from orthorhombic to cubic configuration. The average crystallite dimensions spanned from 54 to 41 nm. Distinct FT-IR bands at approximately 687 and 434 cm-1 were intricately linked to the La-O and Cu-O stretching modes inherent to the orthorhombic La2CuO4 phase. The energy gap determined through the Kubelka–Munk (K–M) methodology, experienced an elevation concomitant with the heightened Al3+ content (1.67–1.72 eV), attributable to quantum confinement phenomena. Within the La2-xAlxCuO4 (x = 0 to 0.25) system, the genesis of nanoscaled crystallized grains, interspersed with pores resulting from the amalgamation of grains, was evident. Analysis of hysteresis curves unveiled the emergence of soft ferromagnetic behavior at ambient temperature.\",\"PeriodicalId\":54394,\"journal\":{\"name\":\"Journal of Ovonic Research\",\"volume\":\"165 \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Ovonic Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.15251/jor.2024.202.143\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ovonic Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.15251/jor.2024.202.143","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Synthesis and Exploring structural, magnetic, morphology and optical properties of La2−xAlxCuO4 (0 ≤ x ≤ 0.25) perovskite nanoparticles by microwave-assisted combustion method
La2CuO4 perovskite nanoparticles doped with aluminum were synthesized through the microwave-assisted combustion technique. Comprehensive studies on the structural, magnetic optical, functional and morphological properties were conducted using various techniques, including XRD, EDX, VSM, DRS-UV, FT-IR and FESEM respectively, .The XRD patterns of pristine La2CuO4 and Al-doped La2CuO4 unequivocally validated the exclusive development of a perovskite structure, devoid of any impurities. Nevertheless, the augmentation in Al3+ content (x = 0–0.25) induced a noteworthy phase shift from orthorhombic to cubic configuration. The average crystallite dimensions spanned from 54 to 41 nm. Distinct FT-IR bands at approximately 687 and 434 cm-1 were intricately linked to the La-O and Cu-O stretching modes inherent to the orthorhombic La2CuO4 phase. The energy gap determined through the Kubelka–Munk (K–M) methodology, experienced an elevation concomitant with the heightened Al3+ content (1.67–1.72 eV), attributable to quantum confinement phenomena. Within the La2-xAlxCuO4 (x = 0 to 0.25) system, the genesis of nanoscaled crystallized grains, interspersed with pores resulting from the amalgamation of grains, was evident. Analysis of hysteresis curves unveiled the emergence of soft ferromagnetic behavior at ambient temperature.
期刊介绍:
Journal of Ovonic Research (JOR) appears with six issues per year and is open to the reviews, papers, short communications and breakings news inserted as Short Notes, in the field of ovonic (mainly chalcogenide) materials for memories, smart materials based on ovonic materials (combinations of various elements including chalcogenides), materials with nano-structures based on various alloys, as well as semiconducting materials and alloys based on amorphous silicon, germanium, carbon in their various nanostructured forms, either simple or doped/alloyed with hydrogen, fluorine, chlorine and other elements of high interest for applications in electronics and optoelectronics. Papers on minerals with possible applications in electronics and optoelectronics are encouraged.