衡量失业风险

FEDS Notes Pub Date : 2024-03-01 DOI:10.17016/2380-7172.3453
Brendan J. Chapuis, John Coglianese
{"title":"衡量失业风险","authors":"Brendan J. Chapuis, John Coglianese","doi":"10.17016/2380-7172.3453","DOIUrl":null,"url":null,"abstract":"In this note, we introduce a measure of unemployment risk, the likelihood of a worker becoming unemployed within the next twelve months. By using nonparametric machine learning applied to data on millions of workers in the US, we can estimate how unemployment risk varies across individuals and over time.","PeriodicalId":411218,"journal":{"name":"FEDS Notes","volume":"65 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Measuring Unemployment Risk\",\"authors\":\"Brendan J. Chapuis, John Coglianese\",\"doi\":\"10.17016/2380-7172.3453\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this note, we introduce a measure of unemployment risk, the likelihood of a worker becoming unemployed within the next twelve months. By using nonparametric machine learning applied to data on millions of workers in the US, we can estimate how unemployment risk varies across individuals and over time.\",\"PeriodicalId\":411218,\"journal\":{\"name\":\"FEDS Notes\",\"volume\":\"65 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FEDS Notes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17016/2380-7172.3453\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEDS Notes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17016/2380-7172.3453","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本说明中,我们介绍了失业风险的衡量标准,即工人在未来 12 个月内失业的可能性。通过将非参数机器学习应用于美国数百万工人的数据,我们可以估算出失业风险在不同个体和不同时期的变化情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Measuring Unemployment Risk
In this note, we introduce a measure of unemployment risk, the likelihood of a worker becoming unemployed within the next twelve months. By using nonparametric machine learning applied to data on millions of workers in the US, we can estimate how unemployment risk varies across individuals and over time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Rising Markups and Declining Business Dynamism: Evidence From the Industry Cross Section Quantifying Treasury Cash-Futures Basis Trades Measuring Unemployment Risk Assessing the Extent of Trade Fragmentation Measuring U.S. Cross-Border Securities Flows: New Data and A Guide for Researchers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1