{"title":"罗斯比波的(2+1)维演化模型及其共振 Y 型孤子和交互解","authors":"Chunxia Wang, Xiaojun Yin","doi":"10.1016/j.wavemoti.2024.103323","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we derive a Kadomtsev-Petviashvili equation by using the multi-scale expansion and perturbation method, which is a model from the potential vorticity equation in the traditional approximation and describes the Rossby wave propagation properties. The N-soliton solutions, resonance Y-type soliton solutions, resonance X-type soliton solutions and interaction solutions of the equation are obtained with the help of dependent-variable transformation. In addition, the composite graphs are given to view the resonance phenomenon of Rossby waves. The results better enrich the research of Rossby waves in ocean dynamics and atmospheric dynamics.</p></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":"128 ","pages":"Article 103323"},"PeriodicalIF":2.1000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A (2+1) -dimensional evolution model of Rossby waves and its resonance Y-type soliton and interaction solutions\",\"authors\":\"Chunxia Wang, Xiaojun Yin\",\"doi\":\"10.1016/j.wavemoti.2024.103323\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we derive a Kadomtsev-Petviashvili equation by using the multi-scale expansion and perturbation method, which is a model from the potential vorticity equation in the traditional approximation and describes the Rossby wave propagation properties. The N-soliton solutions, resonance Y-type soliton solutions, resonance X-type soliton solutions and interaction solutions of the equation are obtained with the help of dependent-variable transformation. In addition, the composite graphs are given to view the resonance phenomenon of Rossby waves. The results better enrich the research of Rossby waves in ocean dynamics and atmospheric dynamics.</p></div>\",\"PeriodicalId\":49367,\"journal\":{\"name\":\"Wave Motion\",\"volume\":\"128 \",\"pages\":\"Article 103323\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wave Motion\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165212524000532\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wave Motion","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165212524000532","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
摘要
本文利用多尺度扩展和扰动方法推导了卡多姆采夫-彼得维亚什维利方程,该方程是传统近似中的势涡度方程的模型,描述了罗斯比波的传播特性。借助因变量变换,得到了该方程的 N 孤子解、共振 Y 型孤子解、共振 X 型孤子解和相互作用解。此外,还给出了观察罗斯比波共振现象的复合图。这些结果更好地丰富了罗斯比波在海洋动力学和大气动力学中的研究。
A (2+1) -dimensional evolution model of Rossby waves and its resonance Y-type soliton and interaction solutions
In this paper, we derive a Kadomtsev-Petviashvili equation by using the multi-scale expansion and perturbation method, which is a model from the potential vorticity equation in the traditional approximation and describes the Rossby wave propagation properties. The N-soliton solutions, resonance Y-type soliton solutions, resonance X-type soliton solutions and interaction solutions of the equation are obtained with the help of dependent-variable transformation. In addition, the composite graphs are given to view the resonance phenomenon of Rossby waves. The results better enrich the research of Rossby waves in ocean dynamics and atmospheric dynamics.
期刊介绍:
Wave Motion is devoted to the cross fertilization of ideas, and to stimulating interaction between workers in various research areas in which wave propagation phenomena play a dominant role. The description and analysis of wave propagation phenomena provides a unifying thread connecting diverse areas of engineering and the physical sciences such as acoustics, optics, geophysics, seismology, electromagnetic theory, solid and fluid mechanics.
The journal publishes papers on analytical, numerical and experimental methods. Papers that address fundamentally new topics in wave phenomena or develop wave propagation methods for solving direct and inverse problems are of interest to the journal.