Fangxuan Chen, Shihao Wang, M. Dejam, H. Nasrabadi
{"title":"氢气和甲烷竞争吸附的分子模拟:枯竭页岩气藏中的储氢可行性分析","authors":"Fangxuan Chen, Shihao Wang, M. Dejam, H. Nasrabadi","doi":"10.2118/212218-pa","DOIUrl":null,"url":null,"abstract":"\n As a clean energy carrier, hydrogen (H2) is considered an indispensable part of the energy transition roadmap. To meet increasing energy demand, extremely large storage capacities are required. Previous studies have focused on underground H2 storage in conventional depleted gas reservoirs, salt caverns, and saline aquifers. The increasing number of depleted shale gas reservoirs may be good candidates for H2 storage. In this work, we analyze the potential of H2 storage in depleted gas reservoirs using Monte Carlo (MC) simulations. The competitive adsorption of a methane-hydrogen (C1-H2) system under nanoscale conditions is investigated, including the effects of pore size, temperature, pressure, boundary material, and fluid composition. Our results show that C1 is preferentially adsorbed in a C1-H2 system. C1 forms the adsorption layer near the boundary surface, while H2 molecules are freely distributed in the pore. The fluid distribution indicates that H2 can be easily produced during H2 recovery processes, which contributes to H2 storage in depleted shale gas reservoirs. In addition, the effect of water on C1-H2 competitive adsorption is analyzed. The strong interactions between water and boundary atoms force C1 molecules away from the adsorbed region. This work provides a foundation for hydrogen storage in depleted shale gas reservoirs at a molecular level.","PeriodicalId":22252,"journal":{"name":"SPE Journal","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular Simulation of Competitive Adsorption of Hydrogen and Methane: Analysis of Hydrogen Storage Feasibility in Depleted Shale Gas Reservoirs\",\"authors\":\"Fangxuan Chen, Shihao Wang, M. Dejam, H. Nasrabadi\",\"doi\":\"10.2118/212218-pa\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n As a clean energy carrier, hydrogen (H2) is considered an indispensable part of the energy transition roadmap. To meet increasing energy demand, extremely large storage capacities are required. Previous studies have focused on underground H2 storage in conventional depleted gas reservoirs, salt caverns, and saline aquifers. The increasing number of depleted shale gas reservoirs may be good candidates for H2 storage. In this work, we analyze the potential of H2 storage in depleted gas reservoirs using Monte Carlo (MC) simulations. The competitive adsorption of a methane-hydrogen (C1-H2) system under nanoscale conditions is investigated, including the effects of pore size, temperature, pressure, boundary material, and fluid composition. Our results show that C1 is preferentially adsorbed in a C1-H2 system. C1 forms the adsorption layer near the boundary surface, while H2 molecules are freely distributed in the pore. The fluid distribution indicates that H2 can be easily produced during H2 recovery processes, which contributes to H2 storage in depleted shale gas reservoirs. In addition, the effect of water on C1-H2 competitive adsorption is analyzed. The strong interactions between water and boundary atoms force C1 molecules away from the adsorbed region. This work provides a foundation for hydrogen storage in depleted shale gas reservoirs at a molecular level.\",\"PeriodicalId\":22252,\"journal\":{\"name\":\"SPE Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPE Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2118/212218-pa\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, PETROLEUM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPE Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2118/212218-pa","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, PETROLEUM","Score":null,"Total":0}
Molecular Simulation of Competitive Adsorption of Hydrogen and Methane: Analysis of Hydrogen Storage Feasibility in Depleted Shale Gas Reservoirs
As a clean energy carrier, hydrogen (H2) is considered an indispensable part of the energy transition roadmap. To meet increasing energy demand, extremely large storage capacities are required. Previous studies have focused on underground H2 storage in conventional depleted gas reservoirs, salt caverns, and saline aquifers. The increasing number of depleted shale gas reservoirs may be good candidates for H2 storage. In this work, we analyze the potential of H2 storage in depleted gas reservoirs using Monte Carlo (MC) simulations. The competitive adsorption of a methane-hydrogen (C1-H2) system under nanoscale conditions is investigated, including the effects of pore size, temperature, pressure, boundary material, and fluid composition. Our results show that C1 is preferentially adsorbed in a C1-H2 system. C1 forms the adsorption layer near the boundary surface, while H2 molecules are freely distributed in the pore. The fluid distribution indicates that H2 can be easily produced during H2 recovery processes, which contributes to H2 storage in depleted shale gas reservoirs. In addition, the effect of water on C1-H2 competitive adsorption is analyzed. The strong interactions between water and boundary atoms force C1 molecules away from the adsorbed region. This work provides a foundation for hydrogen storage in depleted shale gas reservoirs at a molecular level.
期刊介绍:
Covers theories and emerging concepts spanning all aspects of engineering for oil and gas exploration and production, including reservoir characterization, multiphase flow, drilling dynamics, well architecture, gas well deliverability, numerical simulation, enhanced oil recovery, CO2 sequestration, and benchmarking and performance indicators.