气体对水平带状生长的影响

IF 1.7 4区 材料科学 Q3 CRYSTALLOGRAPHY Journal of Crystal Growth Pub Date : 2024-03-22 DOI:10.1016/j.jcrysgro.2024.127675
Nojan Bagheri-Sadeghi, Brian T. Helenbrook
{"title":"气体对水平带状生长的影响","authors":"Nojan Bagheri-Sadeghi,&nbsp;Brian T. Helenbrook","doi":"10.1016/j.jcrysgro.2024.127675","DOIUrl":null,"url":null,"abstract":"<div><p>Three-phase (solid, melt, and gas) and two-phase (solid and melt) models of horizontal ribbon growth were compared to identify the significance of different gas effects. The boundary conditions at the melt–gas and solid–gas interfaces for two-phase simulations were obtained from decoupled simulations of the gas phase. The results showed that the gas shear stress strongly changes the flow and temperature fields and the position of the triple-phase line. Also, the gas pressure distribution determined the vertical position of the triple-phase line. In the absence of growth angle effects, the results of the two-phase model with specified convective heat transfer coefficient, shear stress, and pressure as boundary conditions along the gas phase interface closely matched that of the three-phase model. Even with non-zero growth angle effects, the two-phase model with all the boundary conditions agreed well with three-phase simulation results, despite increased deviations at higher pull speeds. Finally, the results indicated that gas-induced velocities are significant compared to the Marangoni and buoyancy velocities, which could lead to flow instabilities and the variations in solid shape as observed in HRG experiments.</p></div>","PeriodicalId":353,"journal":{"name":"Journal of Crystal Growth","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gas effects on horizontal ribbon growth\",\"authors\":\"Nojan Bagheri-Sadeghi,&nbsp;Brian T. Helenbrook\",\"doi\":\"10.1016/j.jcrysgro.2024.127675\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Three-phase (solid, melt, and gas) and two-phase (solid and melt) models of horizontal ribbon growth were compared to identify the significance of different gas effects. The boundary conditions at the melt–gas and solid–gas interfaces for two-phase simulations were obtained from decoupled simulations of the gas phase. The results showed that the gas shear stress strongly changes the flow and temperature fields and the position of the triple-phase line. Also, the gas pressure distribution determined the vertical position of the triple-phase line. In the absence of growth angle effects, the results of the two-phase model with specified convective heat transfer coefficient, shear stress, and pressure as boundary conditions along the gas phase interface closely matched that of the three-phase model. Even with non-zero growth angle effects, the two-phase model with all the boundary conditions agreed well with three-phase simulation results, despite increased deviations at higher pull speeds. Finally, the results indicated that gas-induced velocities are significant compared to the Marangoni and buoyancy velocities, which could lead to flow instabilities and the variations in solid shape as observed in HRG experiments.</p></div>\",\"PeriodicalId\":353,\"journal\":{\"name\":\"Journal of Crystal Growth\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Crystal Growth\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022024824001106\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CRYSTALLOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Crystal Growth","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022024824001106","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
引用次数: 0

摘要

比较了水平带状生长的三相(固体、熔体和气体)和两相(固体和熔体)模型,以确定不同气体效应的重要性。两相模拟中熔体-气体界面和固体-气体界面的边界条件是从气相的解耦模拟中获得的。结果表明,气体剪应力强烈改变了流场和温度场以及三相线的位置。此外,气体压力分布也决定了三相线的垂直位置。在没有生长角效应的情况下,以指定的对流传热系数、剪应力和压力作为气相界面边界条件的两相模型的结果与三相模型的结果非常接近。即使在生长角效应不为零的情况下,采用所有边界条件的两相模型与三相模拟结果也非常吻合,尽管在拉速较高时偏差会增大。最后,研究结果表明,与马兰戈尼速度和浮力速度相比,气体诱导速度非常大,这可能导致流动不稳定以及在 HRG 实验中观察到的固体形状变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Gas effects on horizontal ribbon growth

Three-phase (solid, melt, and gas) and two-phase (solid and melt) models of horizontal ribbon growth were compared to identify the significance of different gas effects. The boundary conditions at the melt–gas and solid–gas interfaces for two-phase simulations were obtained from decoupled simulations of the gas phase. The results showed that the gas shear stress strongly changes the flow and temperature fields and the position of the triple-phase line. Also, the gas pressure distribution determined the vertical position of the triple-phase line. In the absence of growth angle effects, the results of the two-phase model with specified convective heat transfer coefficient, shear stress, and pressure as boundary conditions along the gas phase interface closely matched that of the three-phase model. Even with non-zero growth angle effects, the two-phase model with all the boundary conditions agreed well with three-phase simulation results, despite increased deviations at higher pull speeds. Finally, the results indicated that gas-induced velocities are significant compared to the Marangoni and buoyancy velocities, which could lead to flow instabilities and the variations in solid shape as observed in HRG experiments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Crystal Growth
Journal of Crystal Growth 化学-晶体学
CiteScore
3.60
自引率
11.10%
发文量
373
审稿时长
65 days
期刊介绍: The journal offers a common reference and publication source for workers engaged in research on the experimental and theoretical aspects of crystal growth and its applications, e.g. in devices. Experimental and theoretical contributions are published in the following fields: theory of nucleation and growth, molecular kinetics and transport phenomena, crystallization in viscous media such as polymers and glasses; crystal growth of metals, minerals, semiconductors, superconductors, magnetics, inorganic, organic and biological substances in bulk or as thin films; molecular beam epitaxy, chemical vapor deposition, growth of III-V and II-VI and other semiconductors; characterization of single crystals by physical and chemical methods; apparatus, instrumentation and techniques for crystal growth, and purification methods; multilayer heterostructures and their characterisation with an emphasis on crystal growth and epitaxial aspects of electronic materials. A special feature of the journal is the periodic inclusion of proceedings of symposia and conferences on relevant aspects of crystal growth.
期刊最新文献
Optical transmittance range of High-Temperature stable phase germanium dichalcogenide (GeS2) single crystal grown by the Bridgman method Investigation on the carrier dynamics and energy band of the CVD-grown large area WS2/Bi2O2Se heterostructure Editorial Board Capture zone scaling in 2D Ge island nucleation on Si(111)-(7 × 7) at elevated temperatures Study of GaN solubility in ammonothermal alkaline solution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1