基于电弧的 DED 工艺的奥氏体不锈钢添加剂制造的微观结构转变和耐磨性改善

IF 5 Q1 ENGINEERING, MULTIDISCIPLINARY Defence Technology(防务技术) Pub Date : 2024-08-01 DOI:10.1016/j.dt.2024.02.006
{"title":"基于电弧的 DED 工艺的奥氏体不锈钢添加剂制造的微观结构转变和耐磨性改善","authors":"","doi":"10.1016/j.dt.2024.02.006","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, austenitic stainless steel (ASS) was additively fabricated by an arc-based direct energy deposition (DED) technique. Macrostructure, microstructure, mechanical characteristics at different spatial orientations (0°, 90°, and 45°), and wear characteristics were evaluated at the deposited structure top, middle, and bottom regions. Results show that austenite (γ) and delta-ferrite (δ) phases make up most of the microstructure of additively fabricated SS316LSi steel. Within γ matrix, δ phase is dispersed both (within and along) grain boundaries, exhibiting a fine vermicular morphology. The bottom, middle, and top regions of WAAM deposited ASS exhibit similar values to those of wrought SS316L in the tensile and impact test findings. Notably, a drop in hardness values is observed as build height increases. During SEM examinations of fractured surfaces from tensile specimen, closed dimples were observed, indicating good ductility of as-built structure. Wear test findings show signs of mild oxidation and usual adhesive wear. By depositing a mechanically mixed composite layer, an increase in the oxidation percentage was discovered to facilitate healing of worn surfaces. The findings of this study will help in design, production and renovation of products/components that are prone to wear. WAAM-deposited ASS has remarkable strength and ability to withstand impacts; it can be used in the production of armour plates for defence applications, mainly military vehicles and aircraft.</p></div>","PeriodicalId":58209,"journal":{"name":"Defence Technology(防务技术)","volume":"38 ","pages":"Pages 194-204"},"PeriodicalIF":5.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214914724000357/pdfft?md5=a06def160380aad49c4d72ada6191bd9&pid=1-s2.0-S2214914724000357-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Microstructure transformations and improving wear resistance of austenitic stainless steel additively fabricated by arc-based DED process\",\"authors\":\"\",\"doi\":\"10.1016/j.dt.2024.02.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, austenitic stainless steel (ASS) was additively fabricated by an arc-based direct energy deposition (DED) technique. Macrostructure, microstructure, mechanical characteristics at different spatial orientations (0°, 90°, and 45°), and wear characteristics were evaluated at the deposited structure top, middle, and bottom regions. Results show that austenite (γ) and delta-ferrite (δ) phases make up most of the microstructure of additively fabricated SS316LSi steel. Within γ matrix, δ phase is dispersed both (within and along) grain boundaries, exhibiting a fine vermicular morphology. The bottom, middle, and top regions of WAAM deposited ASS exhibit similar values to those of wrought SS316L in the tensile and impact test findings. Notably, a drop in hardness values is observed as build height increases. During SEM examinations of fractured surfaces from tensile specimen, closed dimples were observed, indicating good ductility of as-built structure. Wear test findings show signs of mild oxidation and usual adhesive wear. By depositing a mechanically mixed composite layer, an increase in the oxidation percentage was discovered to facilitate healing of worn surfaces. The findings of this study will help in design, production and renovation of products/components that are prone to wear. WAAM-deposited ASS has remarkable strength and ability to withstand impacts; it can be used in the production of armour plates for defence applications, mainly military vehicles and aircraft.</p></div>\",\"PeriodicalId\":58209,\"journal\":{\"name\":\"Defence Technology(防务技术)\",\"volume\":\"38 \",\"pages\":\"Pages 194-204\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2214914724000357/pdfft?md5=a06def160380aad49c4d72ada6191bd9&pid=1-s2.0-S2214914724000357-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Defence Technology(防务技术)\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214914724000357\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Defence Technology(防务技术)","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214914724000357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用基于电弧的直接能量沉积(DED)技术,对奥氏体不锈钢(ASS)进行了添加式制造。对沉积结构顶部、中部和底部区域的宏观结构、微观结构、不同空间取向(0°、90° 和 45°)下的机械特性以及磨损特性进行了评估。结果表明,奥氏体(γ)和δ-铁素体(δ)相构成了加成法制造的 SS316LSi 钢的大部分微观结构。在γ基体中,δ相分散在晶界(内部和沿晶界),呈现出细小的蛭石形态。在拉伸和冲击测试结果中,WAAM 沉积 ASS 的底部、中部和顶部区域显示出与锻造 SS316L 相似的值。值得注意的是,随着堆积高度的增加,硬度值有所下降。在对拉伸试样断裂表面进行扫描电子显微镜检查时,观察到了封闭的凹陷,这表明坯体结构具有良好的延展性。磨损测试结果显示出轻度氧化和常见的粘合剂磨损迹象。通过沉积机械混合复合层,发现氧化百分比增加,从而促进了磨损表面的愈合。这项研究的结果将有助于易磨损产品/部件的设计、生产和翻新。WAAM 沉积的 ASS 具有出色的强度和抗冲击能力,可用于生产国防应用领域(主要是军用车辆和飞机)的装甲板。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Microstructure transformations and improving wear resistance of austenitic stainless steel additively fabricated by arc-based DED process

In this study, austenitic stainless steel (ASS) was additively fabricated by an arc-based direct energy deposition (DED) technique. Macrostructure, microstructure, mechanical characteristics at different spatial orientations (0°, 90°, and 45°), and wear characteristics were evaluated at the deposited structure top, middle, and bottom regions. Results show that austenite (γ) and delta-ferrite (δ) phases make up most of the microstructure of additively fabricated SS316LSi steel. Within γ matrix, δ phase is dispersed both (within and along) grain boundaries, exhibiting a fine vermicular morphology. The bottom, middle, and top regions of WAAM deposited ASS exhibit similar values to those of wrought SS316L in the tensile and impact test findings. Notably, a drop in hardness values is observed as build height increases. During SEM examinations of fractured surfaces from tensile specimen, closed dimples were observed, indicating good ductility of as-built structure. Wear test findings show signs of mild oxidation and usual adhesive wear. By depositing a mechanically mixed composite layer, an increase in the oxidation percentage was discovered to facilitate healing of worn surfaces. The findings of this study will help in design, production and renovation of products/components that are prone to wear. WAAM-deposited ASS has remarkable strength and ability to withstand impacts; it can be used in the production of armour plates for defence applications, mainly military vehicles and aircraft.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Defence Technology(防务技术)
Defence Technology(防务技术) Mechanical Engineering, Control and Systems Engineering, Industrial and Manufacturing Engineering
CiteScore
8.70
自引率
0.00%
发文量
728
审稿时长
25 days
期刊介绍: Defence Technology, a peer reviewed journal, is published monthly and aims to become the best international academic exchange platform for the research related to defence technology. It publishes original research papers having direct bearing on defence, with a balanced coverage on analytical, experimental, numerical simulation and applied investigations. It covers various disciplines of science, technology and engineering.
期刊最新文献
IFC - Editorial Board Analysis model for damage of reinforced bars in RC beams under contact explosion Modelling of internal ballistics of gun systems: A review A tensile wearable SHF antenna with efficient communication in defense beacon technology An isogeometric analysis approach for dynamic response of doubly-curved magneto electro elastic composite shallow shell subjected to blast loading
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1