Abigail P Bline, Jamie C DeWitt, Carol F Kwiatkowski, Katherine E Pelch, Anna Reade, Julia R Varshavsky
{"title":"与 PFAS 相关的免疫毒性的公共健康风险是真实存在的。","authors":"Abigail P Bline, Jamie C DeWitt, Carol F Kwiatkowski, Katherine E Pelch, Anna Reade, Julia R Varshavsky","doi":"10.1007/s40572-024-00441-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose of review: </strong>The discovery of per- and polyfluoroalkyl substances (PFAS) in the environment and humans worldwide has ignited scientific research, government inquiry, and public concern over numerous adverse health effects associated with PFAS exposure. In this review, we discuss the use of PFAS immunotoxicity data in regulatory and clinical decision-making contexts and question whether recent efforts adequately account for PFAS immunotoxicity in public health decision-making.</p><p><strong>Recent findings: </strong>Government and academic reviews confirm the strongest human evidence for PFAS immunotoxicity is reduced antibody production in response to vaccinations, particularly for tetanus and diphtheria. However, recent events, such as the economic analysis supporting the proposed national primary drinking water regulations and clinical monitoring recommendations, indicate a failure to adequately incorporate these data into regulatory and clinical decisions. To be more protective of public health, we recommend using all relevant immunotoxicity data to inform current and future PFAS-related chemical risk assessment and regulation. Biological measures of immune system effects, such as reduced antibody levels in response to vaccination, should be used as valid and informative markers of health outcomes and risks associated with PFAS exposure. Routine toxicity testing should be expanded to include immunotoxicity evaluations in adult and developing organisms. In addition, clinical recommendations for PFAS-exposed individuals and communities should be revisited and strengthened to provide guidance on incorporating immune system monitoring and other actions that can be taken to protect against adverse health outcomes.</p>","PeriodicalId":10775,"journal":{"name":"Current Environmental Health Reports","volume":" ","pages":"118-127"},"PeriodicalIF":7.4000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11081924/pdf/","citationCount":"0","resultStr":"{\"title\":\"Public Health Risks of PFAS-Related Immunotoxicity Are Real.\",\"authors\":\"Abigail P Bline, Jamie C DeWitt, Carol F Kwiatkowski, Katherine E Pelch, Anna Reade, Julia R Varshavsky\",\"doi\":\"10.1007/s40572-024-00441-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose of review: </strong>The discovery of per- and polyfluoroalkyl substances (PFAS) in the environment and humans worldwide has ignited scientific research, government inquiry, and public concern over numerous adverse health effects associated with PFAS exposure. In this review, we discuss the use of PFAS immunotoxicity data in regulatory and clinical decision-making contexts and question whether recent efforts adequately account for PFAS immunotoxicity in public health decision-making.</p><p><strong>Recent findings: </strong>Government and academic reviews confirm the strongest human evidence for PFAS immunotoxicity is reduced antibody production in response to vaccinations, particularly for tetanus and diphtheria. However, recent events, such as the economic analysis supporting the proposed national primary drinking water regulations and clinical monitoring recommendations, indicate a failure to adequately incorporate these data into regulatory and clinical decisions. To be more protective of public health, we recommend using all relevant immunotoxicity data to inform current and future PFAS-related chemical risk assessment and regulation. Biological measures of immune system effects, such as reduced antibody levels in response to vaccination, should be used as valid and informative markers of health outcomes and risks associated with PFAS exposure. Routine toxicity testing should be expanded to include immunotoxicity evaluations in adult and developing organisms. In addition, clinical recommendations for PFAS-exposed individuals and communities should be revisited and strengthened to provide guidance on incorporating immune system monitoring and other actions that can be taken to protect against adverse health outcomes.</p>\",\"PeriodicalId\":10775,\"journal\":{\"name\":\"Current Environmental Health Reports\",\"volume\":\" \",\"pages\":\"118-127\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11081924/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Environmental Health Reports\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s40572-024-00441-y\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Environmental Health Reports","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s40572-024-00441-y","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/25 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
Public Health Risks of PFAS-Related Immunotoxicity Are Real.
Purpose of review: The discovery of per- and polyfluoroalkyl substances (PFAS) in the environment and humans worldwide has ignited scientific research, government inquiry, and public concern over numerous adverse health effects associated with PFAS exposure. In this review, we discuss the use of PFAS immunotoxicity data in regulatory and clinical decision-making contexts and question whether recent efforts adequately account for PFAS immunotoxicity in public health decision-making.
Recent findings: Government and academic reviews confirm the strongest human evidence for PFAS immunotoxicity is reduced antibody production in response to vaccinations, particularly for tetanus and diphtheria. However, recent events, such as the economic analysis supporting the proposed national primary drinking water regulations and clinical monitoring recommendations, indicate a failure to adequately incorporate these data into regulatory and clinical decisions. To be more protective of public health, we recommend using all relevant immunotoxicity data to inform current and future PFAS-related chemical risk assessment and regulation. Biological measures of immune system effects, such as reduced antibody levels in response to vaccination, should be used as valid and informative markers of health outcomes and risks associated with PFAS exposure. Routine toxicity testing should be expanded to include immunotoxicity evaluations in adult and developing organisms. In addition, clinical recommendations for PFAS-exposed individuals and communities should be revisited and strengthened to provide guidance on incorporating immune system monitoring and other actions that can be taken to protect against adverse health outcomes.
期刊介绍:
Current Environmental Health Reports provides up-to-date expert reviews in environmental health. The goal is to evaluate and synthesize original research in all disciplines relevant for environmental health sciences, including basic research, clinical research, epidemiology, and environmental policy.