人工智能与国家暴力死亡报告系统:快速回顾。

IF 1.3 4区 医学 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Cin-Computers Informatics Nursing Pub Date : 2024-05-01 DOI:10.1097/CIN.0000000000001124
Lisa C Lindley, Christina N Policastro, Brianne Dosch, Joshua G Ortiz Baco, Charles Q Cao
{"title":"人工智能与国家暴力死亡报告系统:快速回顾。","authors":"Lisa C Lindley, Christina N Policastro, Brianne Dosch, Joshua G Ortiz Baco, Charles Q Cao","doi":"10.1097/CIN.0000000000001124","DOIUrl":null,"url":null,"abstract":"<p><p>As the awareness on violent deaths from guns, drugs, and suicides emerges as a public health crisis in the United States, attempts to prevent injury and mortality through nursing research are critical. The National Violent Death Reporting System provides public health surveillance of US violent deaths; however, understanding the National Violent Death Reporting System's research utility is limited. The purpose of our rapid review of the 2019-2023 literature was to understand to what extent artificial intelligence methods are being used with the National Violent Death Reporting System. We identified 16 National Violent Death Reporting System artificial intelligence studies, with more than half published after 2020. The text-rich content of National Violent Death Reporting System enabled researchers to center their artificial intelligence approaches mostly on natural language processing (50%) or natural language processing and machine learning (37%). Significant heterogeneity in approaches, techniques, and processes was noted across the studies, with critical methods information often lacking. The aims and focus of National Violent Death Reporting System studies were homogeneous and mostly examined suicide among nurses and older adults. Our findings suggested that artificial intelligence is a promising approach to the National Violent Death Reporting System data with significant untapped potential in its use. Artificial intelligence may prove to be a powerful tool enabling nursing scholars and practitioners to reduce the number of preventable, violent deaths.</p>","PeriodicalId":50694,"journal":{"name":"Cin-Computers Informatics Nursing","volume":" ","pages":"369-376"},"PeriodicalIF":1.3000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial Intelligence and the National Violent Death Reporting System: A Rapid Review.\",\"authors\":\"Lisa C Lindley, Christina N Policastro, Brianne Dosch, Joshua G Ortiz Baco, Charles Q Cao\",\"doi\":\"10.1097/CIN.0000000000001124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>As the awareness on violent deaths from guns, drugs, and suicides emerges as a public health crisis in the United States, attempts to prevent injury and mortality through nursing research are critical. The National Violent Death Reporting System provides public health surveillance of US violent deaths; however, understanding the National Violent Death Reporting System's research utility is limited. The purpose of our rapid review of the 2019-2023 literature was to understand to what extent artificial intelligence methods are being used with the National Violent Death Reporting System. We identified 16 National Violent Death Reporting System artificial intelligence studies, with more than half published after 2020. The text-rich content of National Violent Death Reporting System enabled researchers to center their artificial intelligence approaches mostly on natural language processing (50%) or natural language processing and machine learning (37%). Significant heterogeneity in approaches, techniques, and processes was noted across the studies, with critical methods information often lacking. The aims and focus of National Violent Death Reporting System studies were homogeneous and mostly examined suicide among nurses and older adults. Our findings suggested that artificial intelligence is a promising approach to the National Violent Death Reporting System data with significant untapped potential in its use. Artificial intelligence may prove to be a powerful tool enabling nursing scholars and practitioners to reduce the number of preventable, violent deaths.</p>\",\"PeriodicalId\":50694,\"journal\":{\"name\":\"Cin-Computers Informatics Nursing\",\"volume\":\" \",\"pages\":\"369-376\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cin-Computers Informatics Nursing\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/CIN.0000000000001124\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cin-Computers Informatics Nursing","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/CIN.0000000000001124","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

随着枪支、毒品和自杀造成的暴力死亡成为美国的公共卫生危机,通过护理研究预防伤害和死亡的尝试至关重要。全国暴力死亡报告系统对美国的暴力死亡事件进行公共卫生监测;然而,人们对全国暴力死亡报告系统的研究效用了解有限。我们对 2019-2023 年文献进行快速审查的目的是了解国家暴力死亡报告系统在多大程度上使用了人工智能方法。我们确定了 16 项国家暴力死亡报告系统人工智能研究,其中一半以上是在 2020 年之后发表的。全国暴力死亡报告系统的文本内容丰富,因此研究人员的人工智能方法大多以自然语言处理(50%)或自然语言处理和机器学习(37%)为中心。这些研究在方法、技术和流程上存在很大的差异,而且往往缺乏关键的方法信息。国家暴力死亡报告系统研究的目的和重点是相同的,大多研究护士和老年人的自杀问题。我们的研究结果表明,人工智能是处理国家暴力死亡报告系统数据的一种很有前途的方法,其使用潜力还有待挖掘。人工智能可能会被证明是一种强大的工具,使护理学者和从业人员能够减少可预防的暴力死亡人数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Artificial Intelligence and the National Violent Death Reporting System: A Rapid Review.

As the awareness on violent deaths from guns, drugs, and suicides emerges as a public health crisis in the United States, attempts to prevent injury and mortality through nursing research are critical. The National Violent Death Reporting System provides public health surveillance of US violent deaths; however, understanding the National Violent Death Reporting System's research utility is limited. The purpose of our rapid review of the 2019-2023 literature was to understand to what extent artificial intelligence methods are being used with the National Violent Death Reporting System. We identified 16 National Violent Death Reporting System artificial intelligence studies, with more than half published after 2020. The text-rich content of National Violent Death Reporting System enabled researchers to center their artificial intelligence approaches mostly on natural language processing (50%) or natural language processing and machine learning (37%). Significant heterogeneity in approaches, techniques, and processes was noted across the studies, with critical methods information often lacking. The aims and focus of National Violent Death Reporting System studies were homogeneous and mostly examined suicide among nurses and older adults. Our findings suggested that artificial intelligence is a promising approach to the National Violent Death Reporting System data with significant untapped potential in its use. Artificial intelligence may prove to be a powerful tool enabling nursing scholars and practitioners to reduce the number of preventable, violent deaths.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cin-Computers Informatics Nursing
Cin-Computers Informatics Nursing 工程技术-护理
CiteScore
2.00
自引率
15.40%
发文量
248
审稿时长
6-12 weeks
期刊介绍: For over 30 years, CIN: Computers, Informatics, Nursing has been at the interface of the science of information and the art of nursing, publishing articles on the latest developments in nursing informatics, research, education and administrative of health information technology. CIN connects you with colleagues as they share knowledge on implementation of electronic health records systems, design decision-support systems, incorporate evidence-based healthcare in practice, explore point-of-care computing in practice and education, and conceptually integrate nursing languages and standard data sets. Continuing education contact hours are available in every issue.
期刊最新文献
A Pilot Randomized Controlled Study to Determine the Effect of Real-Time Videos With Smart Glass on the Performance of the Cardiopulmonary Resuscitation. A Question Answering Chatbot for Gastric Cancer Patients After Curative Gastrectomy: Development and Evaluation of User Experience and Performance. Migrating Mobile Applications to the Web: Adult Crash Cart Training. Relationship Between Individual Innovativeness Levels and Attitudes Toward Artificial Intelligence Among Nursing and Midwifery Students. The Content, Reliability, and Quality of Insulin Pen Injection Videos on YouTube as Patient Education Resource.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1