{"title":"自动驾驶中的可视化和可视分析。","authors":"Sudhir K Routray","doi":"10.1109/MCG.2024.3381450","DOIUrl":null,"url":null,"abstract":"<p><p>Autonomous driving is no longer a topic of science fiction. Advancements of autonomous driving technologies are now reliable. Effectively harnessing the information is essential for enhancing the safety, reliability, and efficiency of autonomous vehicles. In this article, we explore the pivotal role of visualization and visual analytics (VA) techniques used in autonomous driving. By employing sophisticated data visualization methods, VA, researchers, and practitioners transform intricate datasets into intuitive visual representations, providing valuable insights for decision-making processes. This article delves into various visualization approaches, including spatial-temporal mapping, interactive dashboards, and machine learning-driven analytics, tailored specifically for autonomous driving scenarios. Furthermore, it investigates the integration of real-time sensor data, sensor coordination with VA, and machine learning algorithms to create comprehensive visualizations. This research advocates for the pivotal role of visualization and VA in shaping the future of autonomous driving systems, fostering innovation, and ensuring the safe integration of self-driving vehicles.</p>","PeriodicalId":55026,"journal":{"name":"IEEE Computer Graphics and Applications","volume":"PP ","pages":"43-53"},"PeriodicalIF":1.7000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Visualization and Visual Analytics in Autonomous Driving.\",\"authors\":\"Sudhir K Routray\",\"doi\":\"10.1109/MCG.2024.3381450\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Autonomous driving is no longer a topic of science fiction. Advancements of autonomous driving technologies are now reliable. Effectively harnessing the information is essential for enhancing the safety, reliability, and efficiency of autonomous vehicles. In this article, we explore the pivotal role of visualization and visual analytics (VA) techniques used in autonomous driving. By employing sophisticated data visualization methods, VA, researchers, and practitioners transform intricate datasets into intuitive visual representations, providing valuable insights for decision-making processes. This article delves into various visualization approaches, including spatial-temporal mapping, interactive dashboards, and machine learning-driven analytics, tailored specifically for autonomous driving scenarios. Furthermore, it investigates the integration of real-time sensor data, sensor coordination with VA, and machine learning algorithms to create comprehensive visualizations. This research advocates for the pivotal role of visualization and VA in shaping the future of autonomous driving systems, fostering innovation, and ensuring the safe integration of self-driving vehicles.</p>\",\"PeriodicalId\":55026,\"journal\":{\"name\":\"IEEE Computer Graphics and Applications\",\"volume\":\"PP \",\"pages\":\"43-53\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Computer Graphics and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/MCG.2024.3381450\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Computer Graphics and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/MCG.2024.3381450","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/21 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Visualization and Visual Analytics in Autonomous Driving.
Autonomous driving is no longer a topic of science fiction. Advancements of autonomous driving technologies are now reliable. Effectively harnessing the information is essential for enhancing the safety, reliability, and efficiency of autonomous vehicles. In this article, we explore the pivotal role of visualization and visual analytics (VA) techniques used in autonomous driving. By employing sophisticated data visualization methods, VA, researchers, and practitioners transform intricate datasets into intuitive visual representations, providing valuable insights for decision-making processes. This article delves into various visualization approaches, including spatial-temporal mapping, interactive dashboards, and machine learning-driven analytics, tailored specifically for autonomous driving scenarios. Furthermore, it investigates the integration of real-time sensor data, sensor coordination with VA, and machine learning algorithms to create comprehensive visualizations. This research advocates for the pivotal role of visualization and VA in shaping the future of autonomous driving systems, fostering innovation, and ensuring the safe integration of self-driving vehicles.
期刊介绍:
IEEE Computer Graphics and Applications (CG&A) bridges the theory and practice of computer graphics, visualization, virtual and augmented reality, and HCI. From specific algorithms to full system implementations, CG&A offers a unique combination of peer-reviewed feature articles and informal departments. Theme issues guest edited by leading researchers in their fields track the latest developments and trends in computer-generated graphical content, while tutorials and surveys provide a broad overview of interesting and timely topics. Regular departments further explore the core areas of graphics as well as extend into topics such as usability, education, history, and opinion. Each issue, the story of our cover focuses on creative applications of the technology by an artist or designer. Published six times a year, CG&A is indispensable reading for people working at the leading edge of computer-generated graphics technology and its applications in everything from business to the arts.