方阵亚表面氧 [Ag4OAg] 在银上驱动选择性乙烯环氧化作用

IF 42.8 1区 化学 Q1 CHEMISTRY, PHYSICAL Nature Catalysis Pub Date : 2024-03-25 DOI:10.1038/s41929-024-01135-2
Dongxiao Chen, Lin Chen, Qian-Cheng Zhao, Zheng-Xin Yang, Cheng Shang, Zhi-Pan Liu
{"title":"方阵亚表面氧 [Ag4OAg] 在银上驱动选择性乙烯环氧化作用","authors":"Dongxiao Chen, Lin Chen, Qian-Cheng Zhao, Zheng-Xin Yang, Cheng Shang, Zhi-Pan Liu","doi":"10.1038/s41929-024-01135-2","DOIUrl":null,"url":null,"abstract":"Ag-catalysed ethene epoxidation is the only viable route for making ethene oxide (EO) in industry, but the active site remains elusive due to the lack of tools to probe this reaction under high temperature and high-pressure conditions. Here, aided by advanced machine-learning grand canonical global structure exploration and in situ experiments, we identify a unique surface oxide phase, namely O5 phase, grown on Ag(100) under industrial catalytic conditions. This phase features square-pyramidal subsurface O and strongly adsorbed ethene, which can selectively convert ethene to EO. The other Ag surface facets, although also reconstructing to surface oxide phases, only contain surface O and produce CO2. The complex in situ surface phases with distinct selectivity contribute to an overall medium (50%) selectivity of Ag catalyst to EO. Our further catalysis experiments with in situ infra-red spectroscopy confirm the theory-predicted infra-red-active C=C vibration of adsorbed ethene on O5 phase and the microkinetics simulation results. Ethylene oxide is a key platform chemical that is produced industrially from the epoxidation of ethylene on silver catalysts, but the precise mechanism remains elusive. Now, in a joint computational–experimental effort, a phase of the silver catalyst grown on (100) facets that contains square-pyramidal subsurface oxygens and is stabilized by strongly adsorbed ethylene is identified as the active phase, and the mechanism is revealed.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":null,"pages":null},"PeriodicalIF":42.8000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Square-pyramidal subsurface oxygen [Ag4OAg] drives selective ethene epoxidation on silver\",\"authors\":\"Dongxiao Chen, Lin Chen, Qian-Cheng Zhao, Zheng-Xin Yang, Cheng Shang, Zhi-Pan Liu\",\"doi\":\"10.1038/s41929-024-01135-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ag-catalysed ethene epoxidation is the only viable route for making ethene oxide (EO) in industry, but the active site remains elusive due to the lack of tools to probe this reaction under high temperature and high-pressure conditions. Here, aided by advanced machine-learning grand canonical global structure exploration and in situ experiments, we identify a unique surface oxide phase, namely O5 phase, grown on Ag(100) under industrial catalytic conditions. This phase features square-pyramidal subsurface O and strongly adsorbed ethene, which can selectively convert ethene to EO. The other Ag surface facets, although also reconstructing to surface oxide phases, only contain surface O and produce CO2. The complex in situ surface phases with distinct selectivity contribute to an overall medium (50%) selectivity of Ag catalyst to EO. Our further catalysis experiments with in situ infra-red spectroscopy confirm the theory-predicted infra-red-active C=C vibration of adsorbed ethene on O5 phase and the microkinetics simulation results. Ethylene oxide is a key platform chemical that is produced industrially from the epoxidation of ethylene on silver catalysts, but the precise mechanism remains elusive. Now, in a joint computational–experimental effort, a phase of the silver catalyst grown on (100) facets that contains square-pyramidal subsurface oxygens and is stabilized by strongly adsorbed ethylene is identified as the active phase, and the mechanism is revealed.\",\"PeriodicalId\":18845,\"journal\":{\"name\":\"Nature Catalysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":42.8000,\"publicationDate\":\"2024-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Catalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.nature.com/articles/s41929-024-01135-2\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.nature.com/articles/s41929-024-01135-2","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

银催化的乙烯环氧化反应是工业上制造氧化乙烯(EO)的唯一可行途径,但由于缺乏在高温高压条件下探测该反应的工具,活性位点仍然难以捉摸。在这里,借助先进的机器学习大规范全局结构探索和原位实验,我们确定了一种独特的表面氧化物相,即在工业催化条件下生长在 Ag(100) 上的 O5 相。该相具有方锥体次表面 O 和强吸附乙烯的特点,可选择性地将乙烯转化为环氧乙烷。其他的 Ag 表面虽然也会重构为表面氧化物相,但只含有表面 O 并产生 CO2。复杂的原位表面相具有不同的选择性,使得银催化剂对环氧乙烷的选择性总体处于中等水平(50%)。我们利用原位红外光谱进行的进一步催化实验证实了理论预测的 O5 相上吸附乙烯的红外活性 C=C 振动以及微动力学模拟结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Square-pyramidal subsurface oxygen [Ag4OAg] drives selective ethene epoxidation on silver
Ag-catalysed ethene epoxidation is the only viable route for making ethene oxide (EO) in industry, but the active site remains elusive due to the lack of tools to probe this reaction under high temperature and high-pressure conditions. Here, aided by advanced machine-learning grand canonical global structure exploration and in situ experiments, we identify a unique surface oxide phase, namely O5 phase, grown on Ag(100) under industrial catalytic conditions. This phase features square-pyramidal subsurface O and strongly adsorbed ethene, which can selectively convert ethene to EO. The other Ag surface facets, although also reconstructing to surface oxide phases, only contain surface O and produce CO2. The complex in situ surface phases with distinct selectivity contribute to an overall medium (50%) selectivity of Ag catalyst to EO. Our further catalysis experiments with in situ infra-red spectroscopy confirm the theory-predicted infra-red-active C=C vibration of adsorbed ethene on O5 phase and the microkinetics simulation results. Ethylene oxide is a key platform chemical that is produced industrially from the epoxidation of ethylene on silver catalysts, but the precise mechanism remains elusive. Now, in a joint computational–experimental effort, a phase of the silver catalyst grown on (100) facets that contains square-pyramidal subsurface oxygens and is stabilized by strongly adsorbed ethylene is identified as the active phase, and the mechanism is revealed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Catalysis
Nature Catalysis Chemical Engineering-Bioengineering
CiteScore
52.10
自引率
1.10%
发文量
140
期刊介绍: Nature Catalysis serves as a platform for researchers across chemistry and related fields, focusing on homogeneous catalysis, heterogeneous catalysis, and biocatalysts, encompassing both fundamental and applied studies. With a particular emphasis on advancing sustainable industries and processes, the journal provides comprehensive coverage of catalysis research, appealing to scientists, engineers, and researchers in academia and industry. Maintaining the high standards of the Nature brand, Nature Catalysis boasts a dedicated team of professional editors, rigorous peer-review processes, and swift publication times, ensuring editorial independence and quality. The journal publishes work spanning heterogeneous catalysis, homogeneous catalysis, and biocatalysis, covering areas such as catalytic synthesis, mechanisms, characterization, computational studies, nanoparticle catalysis, electrocatalysis, photocatalysis, environmental catalysis, asymmetric catalysis, and various forms of organocatalysis.
期刊最新文献
Eliminating redox-mediated electron transfer mechanisms on a supported molecular catalyst enables CO2 conversion to ethanol Enantioselective Chan–Lam S-arylation of sulfenamides The structural basis of pyridoxal-5′-phosphate-dependent β-NAD-alkylating enzymes Generative machine learning produces kinetic models that accurately characterize intracellular metabolic states Understanding the interplay between electrocatalytic C(sp3)‒C(sp3) fragmentation and oxygenation reactions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1