Marine Soret, Jacques-Antoine Maisonobe, Philippe Maksud, Stéphane Payen, Manon Allaire, Eric Savier, Charles Roux, Charlotte Lussey-Lepoutre, Aurélie Kas
{"title":"90Y 放射性栓塞术后肝移植的可行性:从辐射防护事故中吸取的教训。","authors":"Marine Soret, Jacques-Antoine Maisonobe, Philippe Maksud, Stéphane Payen, Manon Allaire, Eric Savier, Charles Roux, Charlotte Lussey-Lepoutre, Aurélie Kas","doi":"10.1097/HP.0000000000001814","DOIUrl":null,"url":null,"abstract":"<p><strong>Abstract: </strong>Radioembolization using 90 Y is a growing procedure in nuclear medicine for treating hepatocellular carcinoma. Current guidelines suggest postponing liver transplantation or surgical resection for a period of 14 to 30 d after radioembolization to minimize surgeons' exposure to ionizing radiation. In light of a radiation protection incident, we reevaluated the minimum delay required between radioembolization and subsequent liver transplantation. A patient with a hepatocellular carcinoma underwent a liver transplantation 44 h after undergoing radioembolization using 90 Y (860 MBq SIR-Spheres). No specific radioprotection measures were followed during surgery and pathological analysis. We subsequently (1) evaluated the healthcare professionals' exposure to ionizing radiation by conducting dose rate measurements from removed liver tissue and (2) extrapolated the recommended interval to be observed between radioembolization and surgery/transplantation to ensure compliance with the radiation dose limits for worker safety. The surgeons involved in the transplantation procedure experienced the highest radiation exposure, with whole-body doses of 2.4 mSv and extremity doses of 24 mSv. The recommended delay between radioembolization and liver transplantation was 8 d when using SIR-Spheres and 15 d when injecting TheraSphere. This delay can be reduced further when considering the specific 90 Y activity administered during radioembolization. This dosimetric study suggests the feasibility of shortening the delay for liver transplantation/surgery after radioembolization from the 8th or 15th day after using SIR-Spheres or TheraSphere, respectively. This delay can be decreased further when adjusted to the administrated activity while upholding radiation protection standards for healthcare professionals.</p>","PeriodicalId":12976,"journal":{"name":"Health physics","volume":" ","pages":"373-377"},"PeriodicalIF":1.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feasibility of Liver Transplantation after 90 Y Radioembolization: Lessons from a Radiation Protection Incident.\",\"authors\":\"Marine Soret, Jacques-Antoine Maisonobe, Philippe Maksud, Stéphane Payen, Manon Allaire, Eric Savier, Charles Roux, Charlotte Lussey-Lepoutre, Aurélie Kas\",\"doi\":\"10.1097/HP.0000000000001814\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Abstract: </strong>Radioembolization using 90 Y is a growing procedure in nuclear medicine for treating hepatocellular carcinoma. Current guidelines suggest postponing liver transplantation or surgical resection for a period of 14 to 30 d after radioembolization to minimize surgeons' exposure to ionizing radiation. In light of a radiation protection incident, we reevaluated the minimum delay required between radioembolization and subsequent liver transplantation. A patient with a hepatocellular carcinoma underwent a liver transplantation 44 h after undergoing radioembolization using 90 Y (860 MBq SIR-Spheres). No specific radioprotection measures were followed during surgery and pathological analysis. We subsequently (1) evaluated the healthcare professionals' exposure to ionizing radiation by conducting dose rate measurements from removed liver tissue and (2) extrapolated the recommended interval to be observed between radioembolization and surgery/transplantation to ensure compliance with the radiation dose limits for worker safety. The surgeons involved in the transplantation procedure experienced the highest radiation exposure, with whole-body doses of 2.4 mSv and extremity doses of 24 mSv. The recommended delay between radioembolization and liver transplantation was 8 d when using SIR-Spheres and 15 d when injecting TheraSphere. This delay can be reduced further when considering the specific 90 Y activity administered during radioembolization. This dosimetric study suggests the feasibility of shortening the delay for liver transplantation/surgery after radioembolization from the 8th or 15th day after using SIR-Spheres or TheraSphere, respectively. This delay can be decreased further when adjusted to the administrated activity while upholding radiation protection standards for healthcare professionals.</p>\",\"PeriodicalId\":12976,\"journal\":{\"name\":\"Health physics\",\"volume\":\" \",\"pages\":\"373-377\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Health physics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/HP.0000000000001814\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health physics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/HP.0000000000001814","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/26 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Feasibility of Liver Transplantation after 90 Y Radioembolization: Lessons from a Radiation Protection Incident.
Abstract: Radioembolization using 90 Y is a growing procedure in nuclear medicine for treating hepatocellular carcinoma. Current guidelines suggest postponing liver transplantation or surgical resection for a period of 14 to 30 d after radioembolization to minimize surgeons' exposure to ionizing radiation. In light of a radiation protection incident, we reevaluated the minimum delay required between radioembolization and subsequent liver transplantation. A patient with a hepatocellular carcinoma underwent a liver transplantation 44 h after undergoing radioembolization using 90 Y (860 MBq SIR-Spheres). No specific radioprotection measures were followed during surgery and pathological analysis. We subsequently (1) evaluated the healthcare professionals' exposure to ionizing radiation by conducting dose rate measurements from removed liver tissue and (2) extrapolated the recommended interval to be observed between radioembolization and surgery/transplantation to ensure compliance with the radiation dose limits for worker safety. The surgeons involved in the transplantation procedure experienced the highest radiation exposure, with whole-body doses of 2.4 mSv and extremity doses of 24 mSv. The recommended delay between radioembolization and liver transplantation was 8 d when using SIR-Spheres and 15 d when injecting TheraSphere. This delay can be reduced further when considering the specific 90 Y activity administered during radioembolization. This dosimetric study suggests the feasibility of shortening the delay for liver transplantation/surgery after radioembolization from the 8th or 15th day after using SIR-Spheres or TheraSphere, respectively. This delay can be decreased further when adjusted to the administrated activity while upholding radiation protection standards for healthcare professionals.
期刊介绍:
Health Physics, first published in 1958, provides the latest research to a wide variety of radiation safety professionals including health physicists, nuclear chemists, medical physicists, and radiation safety officers with interests in nuclear and radiation science. The Journal allows professionals in these and other disciplines in science and engineering to stay on the cutting edge of scientific and technological advances in the field of radiation safety. The Journal publishes original papers, technical notes, articles on advances in practical applications, editorials, and correspondence. Journal articles report on the latest findings in theoretical, practical, and applied disciplines of epidemiology and radiation effects, radiation biology and radiation science, radiation ecology, and related fields.