{"title":"DOTAD:治疗性抗体可开发性数据库。","authors":"Wenzhen Li, Hongyan Lin, Ziru Huang, Shiyang Xie, Yuwei Zhou, Rong Gong, Qianhu Jiang, ChangCheng Xiang, Jian Huang","doi":"10.1007/s12539-024-00613-2","DOIUrl":null,"url":null,"abstract":"<p><p>The development of therapeutic antibodies is an important aspect of new drug discovery pipelines. The assessment of an antibody's developability-its suitability for large-scale production and therapeutic use-is a particularly important step in this process. Given that experimental assays to assess antibody developability in large scale are expensive and time-consuming, computational methods have been a more efficient alternative. However, the antibody research community faces significant challenges due to the scarcity of readily accessible data on antibody developability, which is essential for training and validating computational models. To address this gap, DOTAD (Database Of Therapeutic Antibody Developability) has been built as the first database dedicated exclusively to the curation of therapeutic antibody developability information. DOTAD aggregates all available therapeutic antibody sequence data along with various developability metrics from the scientific literature, offering researchers a robust platform for data storage, retrieval, exploration, and downloading. In addition to serving as a comprehensive repository, DOTAD enhances its utility by integrating a web-based interface that features state-of-the-art tools for the assessment of antibody developability. This ensures that users not only have access to critical data but also have the convenience of analyzing and interpreting this information. The DOTAD database represents a valuable resource for the scientific community, facilitating the advancement of therapeutic antibody research. It is freely accessible at http://i.uestc.edu.cn/DOTAD/ , providing an open data platform that supports the continuous growth and evolution of computational methods in the field of antibody development.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":"623-634"},"PeriodicalIF":3.9000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DOTAD: A Database of Therapeutic Antibody Developability.\",\"authors\":\"Wenzhen Li, Hongyan Lin, Ziru Huang, Shiyang Xie, Yuwei Zhou, Rong Gong, Qianhu Jiang, ChangCheng Xiang, Jian Huang\",\"doi\":\"10.1007/s12539-024-00613-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The development of therapeutic antibodies is an important aspect of new drug discovery pipelines. The assessment of an antibody's developability-its suitability for large-scale production and therapeutic use-is a particularly important step in this process. Given that experimental assays to assess antibody developability in large scale are expensive and time-consuming, computational methods have been a more efficient alternative. However, the antibody research community faces significant challenges due to the scarcity of readily accessible data on antibody developability, which is essential for training and validating computational models. To address this gap, DOTAD (Database Of Therapeutic Antibody Developability) has been built as the first database dedicated exclusively to the curation of therapeutic antibody developability information. DOTAD aggregates all available therapeutic antibody sequence data along with various developability metrics from the scientific literature, offering researchers a robust platform for data storage, retrieval, exploration, and downloading. In addition to serving as a comprehensive repository, DOTAD enhances its utility by integrating a web-based interface that features state-of-the-art tools for the assessment of antibody developability. This ensures that users not only have access to critical data but also have the convenience of analyzing and interpreting this information. The DOTAD database represents a valuable resource for the scientific community, facilitating the advancement of therapeutic antibody research. It is freely accessible at http://i.uestc.edu.cn/DOTAD/ , providing an open data platform that supports the continuous growth and evolution of computational methods in the field of antibody development.</p>\",\"PeriodicalId\":13670,\"journal\":{\"name\":\"Interdisciplinary Sciences: Computational Life Sciences\",\"volume\":\" \",\"pages\":\"623-634\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interdisciplinary Sciences: Computational Life Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12539-024-00613-2\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Sciences: Computational Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12539-024-00613-2","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
DOTAD: A Database of Therapeutic Antibody Developability.
The development of therapeutic antibodies is an important aspect of new drug discovery pipelines. The assessment of an antibody's developability-its suitability for large-scale production and therapeutic use-is a particularly important step in this process. Given that experimental assays to assess antibody developability in large scale are expensive and time-consuming, computational methods have been a more efficient alternative. However, the antibody research community faces significant challenges due to the scarcity of readily accessible data on antibody developability, which is essential for training and validating computational models. To address this gap, DOTAD (Database Of Therapeutic Antibody Developability) has been built as the first database dedicated exclusively to the curation of therapeutic antibody developability information. DOTAD aggregates all available therapeutic antibody sequence data along with various developability metrics from the scientific literature, offering researchers a robust platform for data storage, retrieval, exploration, and downloading. In addition to serving as a comprehensive repository, DOTAD enhances its utility by integrating a web-based interface that features state-of-the-art tools for the assessment of antibody developability. This ensures that users not only have access to critical data but also have the convenience of analyzing and interpreting this information. The DOTAD database represents a valuable resource for the scientific community, facilitating the advancement of therapeutic antibody research. It is freely accessible at http://i.uestc.edu.cn/DOTAD/ , providing an open data platform that supports the continuous growth and evolution of computational methods in the field of antibody development.
期刊介绍:
Interdisciplinary Sciences--Computational Life Sciences aims to cover the most recent and outstanding developments in interdisciplinary areas of sciences, especially focusing on computational life sciences, an area that is enjoying rapid development at the forefront of scientific research and technology.
The journal publishes original papers of significant general interest covering recent research and developments. Articles will be published rapidly by taking full advantage of internet technology for online submission and peer-reviewing of manuscripts, and then by publishing OnlineFirstTM through SpringerLink even before the issue is built or sent to the printer.
The editorial board consists of many leading scientists with international reputation, among others, Luc Montagnier (UNESCO, France), Dennis Salahub (University of Calgary, Canada), Weitao Yang (Duke University, USA). Prof. Dongqing Wei at the Shanghai Jiatong University is appointed as the editor-in-chief; he made important contributions in bioinformatics and computational physics and is best known for his ground-breaking works on the theory of ferroelectric liquids. With the help from a team of associate editors and the editorial board, an international journal with sound reputation shall be created.