Shamini Chandran, Naveen Eugene Louis, Syazwani Itri Amran, Nurriza Ab Latif, Muaawia Ahmed Hamza, Mona Alonazi
{"title":"通过对二聚体 G6PD 结构的计算分析,阐明 G6PD 变体的致病性。","authors":"Shamini Chandran, Naveen Eugene Louis, Syazwani Itri Amran, Nurriza Ab Latif, Muaawia Ahmed Hamza, Mona Alonazi","doi":"10.37796/2211-8039.1431","DOIUrl":null,"url":null,"abstract":"<p><p>An inherent genetic enzyme disorder in humans, known as glucose-6-phosphate dehydrogenase (G6PD) deficiency, arises due to specific mutations. While the prevailing approach for investigating G6PD variants involves biochemical analysis, the intricate structural details remain limited, impeding a comprehensive understanding of how different G6PD variants of varying classes impact their functionality. This study 22 examined the dynamic properties of G6PD wild types and six G6PD variants from 23 different classes using molecular dynamic simulation (MDS). The wild-type and variant 24 G6PD structures unveil high fluctuations within the amino acid range of 274-515, the structural NADP<sup>+</sup> binding site, pivotal for enzyme dimerization. Specifically, two variants, G6PD<sub>Zacatecas</sub> (R257L) and G6PD<sub>Durham</sub> (K238R), demonstrate compromised structural stability at the dimer interface, attributable to the disruption of a salt bridge involving Glu 206 and Lys 407, along with the disturbance of hydrogen bonds formed by Asp 421 at the βN-βN sheets. Consequently, this impairment cascades to affect the binding affinity of crucial interactions, such as Lys 171-Glucose-6-Phosphate (G6P) and Lys 171-catalytic NADP<sup>+</sup>, leading to diminished enzyme activity. This study underscores the utility of computational in silico techniques in predicting the structural alterations and flexibility of G6PD variants. This insight holds promise for guiding future endeavors in drug development targeted at mitigating the impacts of G6PD deficiency.</p>","PeriodicalId":51650,"journal":{"name":"BioMedicine-Taiwan","volume":"14 1","pages":"47-59"},"PeriodicalIF":2.1000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10962564/pdf/","citationCount":"0","resultStr":"{\"title\":\"Computational analysis of dimer G6PD structure to elucidate pathogenicity of G6PD variants.\",\"authors\":\"Shamini Chandran, Naveen Eugene Louis, Syazwani Itri Amran, Nurriza Ab Latif, Muaawia Ahmed Hamza, Mona Alonazi\",\"doi\":\"10.37796/2211-8039.1431\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>An inherent genetic enzyme disorder in humans, known as glucose-6-phosphate dehydrogenase (G6PD) deficiency, arises due to specific mutations. While the prevailing approach for investigating G6PD variants involves biochemical analysis, the intricate structural details remain limited, impeding a comprehensive understanding of how different G6PD variants of varying classes impact their functionality. This study 22 examined the dynamic properties of G6PD wild types and six G6PD variants from 23 different classes using molecular dynamic simulation (MDS). The wild-type and variant 24 G6PD structures unveil high fluctuations within the amino acid range of 274-515, the structural NADP<sup>+</sup> binding site, pivotal for enzyme dimerization. Specifically, two variants, G6PD<sub>Zacatecas</sub> (R257L) and G6PD<sub>Durham</sub> (K238R), demonstrate compromised structural stability at the dimer interface, attributable to the disruption of a salt bridge involving Glu 206 and Lys 407, along with the disturbance of hydrogen bonds formed by Asp 421 at the βN-βN sheets. Consequently, this impairment cascades to affect the binding affinity of crucial interactions, such as Lys 171-Glucose-6-Phosphate (G6P) and Lys 171-catalytic NADP<sup>+</sup>, leading to diminished enzyme activity. This study underscores the utility of computational in silico techniques in predicting the structural alterations and flexibility of G6PD variants. This insight holds promise for guiding future endeavors in drug development targeted at mitigating the impacts of G6PD deficiency.</p>\",\"PeriodicalId\":51650,\"journal\":{\"name\":\"BioMedicine-Taiwan\",\"volume\":\"14 1\",\"pages\":\"47-59\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10962564/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BioMedicine-Taiwan\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37796/2211-8039.1431\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, GENERAL & INTERNAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioMedicine-Taiwan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37796/2211-8039.1431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
Computational analysis of dimer G6PD structure to elucidate pathogenicity of G6PD variants.
An inherent genetic enzyme disorder in humans, known as glucose-6-phosphate dehydrogenase (G6PD) deficiency, arises due to specific mutations. While the prevailing approach for investigating G6PD variants involves biochemical analysis, the intricate structural details remain limited, impeding a comprehensive understanding of how different G6PD variants of varying classes impact their functionality. This study 22 examined the dynamic properties of G6PD wild types and six G6PD variants from 23 different classes using molecular dynamic simulation (MDS). The wild-type and variant 24 G6PD structures unveil high fluctuations within the amino acid range of 274-515, the structural NADP+ binding site, pivotal for enzyme dimerization. Specifically, two variants, G6PDZacatecas (R257L) and G6PDDurham (K238R), demonstrate compromised structural stability at the dimer interface, attributable to the disruption of a salt bridge involving Glu 206 and Lys 407, along with the disturbance of hydrogen bonds formed by Asp 421 at the βN-βN sheets. Consequently, this impairment cascades to affect the binding affinity of crucial interactions, such as Lys 171-Glucose-6-Phosphate (G6P) and Lys 171-catalytic NADP+, leading to diminished enzyme activity. This study underscores the utility of computational in silico techniques in predicting the structural alterations and flexibility of G6PD variants. This insight holds promise for guiding future endeavors in drug development targeted at mitigating the impacts of G6PD deficiency.