负压疗法对小鼠模型毛发生长的影响

IF 3.5 3区 医学 Q3 CELL & TISSUE ENGINEERING Tissue Engineering Part A Pub Date : 2024-04-09 DOI:10.1089/ten.TEA.2024.0056
Chun-Yu Cheng, Ming-Huei Cheng, Chin-Yu Yang, Cheng-Han Wang, Joshua Lim, Wei Huang, Chih-Hsin Lin
{"title":"负压疗法对小鼠模型毛发生长的影响","authors":"Chun-Yu Cheng, Ming-Huei Cheng, Chin-Yu Yang, Cheng-Han Wang, Joshua Lim, Wei Huang, Chih-Hsin Lin","doi":"10.1089/ten.TEA.2024.0056","DOIUrl":null,"url":null,"abstract":"<p><p>Negative pressure therapy (NPT) has been shown to facilitate wound healing and promote hair growth in a porcine model. However, there is a paucity of research on the impact of negative pressure on hair growth in murine models. Despite the ability of nude mice to develop hair follicles, the hair they produce is often flawed towing to genetically induced keratin disorders, rendering them a pertinent animal model for assessing hair regeneration. Therefore, this study aims to investigate the effects of negative pressure on hair follicle growth in a nude mouse model. To achieve this, a customized external tissue expansion device was developed to apply negative pressure to the dorsum of nude mice. The mice were subjected to several treatment courses consisting of 15 and 30 min of continuous negative pressure at 10 mmHg, which were repeated 5 and 10 times every other day until sacrifice. Dorsal skin samples were subsequently extracted from the suction and nonsuction areas. The sections were stained with various antibodies to assess the expression of SOX-9, LHX-2, Keratin-15, β-catenin, CD31, and vascular endothelial growth factor-A, and a TUNEL assay was used to analyze cell apoptosis. The results showed that the number of hair follicles and angiogenesis were significantly higher in the suction area than in the nonsuction area in all groups. Moreover, mice that received NPT for 15 min for 10 times had a higher hair follicle density than the other three groups. Immunofluorescence staining for LHX-2 and Keratin 15 further validated the results of these findings. In conclusion, this study demonstrated that negative pressure effectively promotes hair follicle growth and angiogenesis in nude mice through SOX-9- and LHX-2-mediated follicular regeneration and β-catenin-mediated hair follicle morphogenesis.</p>","PeriodicalId":56375,"journal":{"name":"Tissue Engineering Part A","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Effects of Negative Pressure Therapy on Hair Growth of Mouse Models.\",\"authors\":\"Chun-Yu Cheng, Ming-Huei Cheng, Chin-Yu Yang, Cheng-Han Wang, Joshua Lim, Wei Huang, Chih-Hsin Lin\",\"doi\":\"10.1089/ten.TEA.2024.0056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Negative pressure therapy (NPT) has been shown to facilitate wound healing and promote hair growth in a porcine model. However, there is a paucity of research on the impact of negative pressure on hair growth in murine models. Despite the ability of nude mice to develop hair follicles, the hair they produce is often flawed towing to genetically induced keratin disorders, rendering them a pertinent animal model for assessing hair regeneration. Therefore, this study aims to investigate the effects of negative pressure on hair follicle growth in a nude mouse model. To achieve this, a customized external tissue expansion device was developed to apply negative pressure to the dorsum of nude mice. The mice were subjected to several treatment courses consisting of 15 and 30 min of continuous negative pressure at 10 mmHg, which were repeated 5 and 10 times every other day until sacrifice. Dorsal skin samples were subsequently extracted from the suction and nonsuction areas. The sections were stained with various antibodies to assess the expression of SOX-9, LHX-2, Keratin-15, β-catenin, CD31, and vascular endothelial growth factor-A, and a TUNEL assay was used to analyze cell apoptosis. The results showed that the number of hair follicles and angiogenesis were significantly higher in the suction area than in the nonsuction area in all groups. Moreover, mice that received NPT for 15 min for 10 times had a higher hair follicle density than the other three groups. Immunofluorescence staining for LHX-2 and Keratin 15 further validated the results of these findings. In conclusion, this study demonstrated that negative pressure effectively promotes hair follicle growth and angiogenesis in nude mice through SOX-9- and LHX-2-mediated follicular regeneration and β-catenin-mediated hair follicle morphogenesis.</p>\",\"PeriodicalId\":56375,\"journal\":{\"name\":\"Tissue Engineering Part A\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tissue Engineering Part A\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/ten.TEA.2024.0056\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue Engineering Part A","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/ten.TEA.2024.0056","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

在猪模型中,负压疗法(NPT)已被证明可促进伤口愈合和毛发生长。然而,有关负压对小鼠模型毛发生长的影响的研究却很少。尽管裸鼠有发育毛囊的能力,但由于基因诱导的角蛋白紊乱,它们长出的毛发往往有缺陷,因此裸鼠是评估毛发再生的一个相关动物模型。因此,本研究旨在研究负压对裸鼠模型毛囊生长的影响。为此,我们开发了一种定制的体外组织扩张装置(ETED),用于在裸鼠背部施加负压。小鼠接受了几个疗程的治疗,包括 15 和 30 分钟 10 mmHg 的持续负压,每隔一天重复五次和十次,直至牺牲。随后从抽吸区和非抽吸区提取背侧皮肤样本。用各种抗体对切片进行染色,以评估 SOX-9、LHX-2、角蛋白-15、β-catenin、CD31 和 VEGF-A 的表达,并用 TUNEL 检测法分析细胞凋亡。结果表明,在所有组别中,抽吸区(SA)的毛囊数量和血管生成都明显高于非抽吸区(NSA)。此外,接受负压治疗 15 分钟 10 次的小鼠的毛囊密度高于其他三组。对 LHX-2 和角蛋白 15 的免疫荧光染色进一步验证了这些研究结果。总之,这项研究表明,负压通过 SOX-9 和 LHX-2 介导的毛囊再生以及 β-catenin 介导的毛囊形态发生,有效促进了裸鼠的毛囊生长和血管生成。.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Effects of Negative Pressure Therapy on Hair Growth of Mouse Models.

Negative pressure therapy (NPT) has been shown to facilitate wound healing and promote hair growth in a porcine model. However, there is a paucity of research on the impact of negative pressure on hair growth in murine models. Despite the ability of nude mice to develop hair follicles, the hair they produce is often flawed towing to genetically induced keratin disorders, rendering them a pertinent animal model for assessing hair regeneration. Therefore, this study aims to investigate the effects of negative pressure on hair follicle growth in a nude mouse model. To achieve this, a customized external tissue expansion device was developed to apply negative pressure to the dorsum of nude mice. The mice were subjected to several treatment courses consisting of 15 and 30 min of continuous negative pressure at 10 mmHg, which were repeated 5 and 10 times every other day until sacrifice. Dorsal skin samples were subsequently extracted from the suction and nonsuction areas. The sections were stained with various antibodies to assess the expression of SOX-9, LHX-2, Keratin-15, β-catenin, CD31, and vascular endothelial growth factor-A, and a TUNEL assay was used to analyze cell apoptosis. The results showed that the number of hair follicles and angiogenesis were significantly higher in the suction area than in the nonsuction area in all groups. Moreover, mice that received NPT for 15 min for 10 times had a higher hair follicle density than the other three groups. Immunofluorescence staining for LHX-2 and Keratin 15 further validated the results of these findings. In conclusion, this study demonstrated that negative pressure effectively promotes hair follicle growth and angiogenesis in nude mice through SOX-9- and LHX-2-mediated follicular regeneration and β-catenin-mediated hair follicle morphogenesis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tissue Engineering Part A
Tissue Engineering Part A Chemical Engineering-Bioengineering
CiteScore
9.20
自引率
2.40%
发文量
163
审稿时长
3 months
期刊介绍: Tissue Engineering is the preeminent, biomedical journal advancing the field with cutting-edge research and applications that repair or regenerate portions or whole tissues. This multidisciplinary journal brings together the principles of engineering and life sciences in the creation of artificial tissues and regenerative medicine. Tissue Engineering is divided into three parts, providing a central forum for groundbreaking scientific research and developments of clinical applications from leading experts in the field that will enable the functional replacement of tissues.
期刊最新文献
Editorial for Special Issue on Artificial Intelligence in Tissue Engineering and Biology. The role of matrix stiffness and viscosity on lipid phenotype and fat lineage potential. Vascularization of Human Acellular Dermal Matrices: A Comparative Study in a Nonhuman Primate Model. Mapping Biomaterial Complexity by Machine Learning. Bi-layered Adipose Mesenchymal Cell Sheets Improve Bladder Compliance in Spinal Cord-Injured Rats.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1