考虑随机需求的最佳无人机机队规模建模

IF 2.1 Q2 OPERATIONS RESEARCH & MANAGEMENT SCIENCE EURO Journal on Transportation and Logistics Pub Date : 2024-01-01 DOI:10.1016/j.ejtl.2024.100127
Yuval Hadas , Miguel A. Figliozzi
{"title":"考虑随机需求的最佳无人机机队规模建模","authors":"Yuval Hadas ,&nbsp;Miguel A. Figliozzi","doi":"10.1016/j.ejtl.2024.100127","DOIUrl":null,"url":null,"abstract":"<div><p>The last mile delivery is particularly challenging for stochastic deliveries with narrow time windows. This topic is timely due to the rise of e-commerce and courier type services and the impacts of fleet size and vehicle type on delivery costs. A novel contribution of this research is to provide an optimization approach, extending the newsvendor model, to provide an optimal drone fleet sizing solution with stochastic demand in terms of number of deliveries and deliveries weight or payload from one central depot. The solutions obtained are robust, as shown in a comprehensive sensitivity analysis.</p></div>","PeriodicalId":45871,"journal":{"name":"EURO Journal on Transportation and Logistics","volume":"13 ","pages":"Article 100127"},"PeriodicalIF":2.1000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2192437624000025/pdfft?md5=6d30acb57ad7b3327b4e21a0e63766ce&pid=1-s2.0-S2192437624000025-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Modeling optimal drone fleet size considering stochastic demand\",\"authors\":\"Yuval Hadas ,&nbsp;Miguel A. Figliozzi\",\"doi\":\"10.1016/j.ejtl.2024.100127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The last mile delivery is particularly challenging for stochastic deliveries with narrow time windows. This topic is timely due to the rise of e-commerce and courier type services and the impacts of fleet size and vehicle type on delivery costs. A novel contribution of this research is to provide an optimization approach, extending the newsvendor model, to provide an optimal drone fleet sizing solution with stochastic demand in terms of number of deliveries and deliveries weight or payload from one central depot. The solutions obtained are robust, as shown in a comprehensive sensitivity analysis.</p></div>\",\"PeriodicalId\":45871,\"journal\":{\"name\":\"EURO Journal on Transportation and Logistics\",\"volume\":\"13 \",\"pages\":\"Article 100127\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2192437624000025/pdfft?md5=6d30acb57ad7b3327b4e21a0e63766ce&pid=1-s2.0-S2192437624000025-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EURO Journal on Transportation and Logistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2192437624000025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURO Journal on Transportation and Logistics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2192437624000025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

对于时间窗口狭窄的随机配送而言,最后一英里配送尤其具有挑战性。由于电子商务和快递类服务的兴起,以及车队规模和车辆类型对送货成本的影响,这一课题显得非常及时。本研究的一个新贡献是提供了一种优化方法,扩展了新闻供应商模型,在随机需求的情况下,从一个中心仓库出发,根据交付数量和交付重量或有效载荷,提供最佳无人机机队规模解决方案。综合敏感性分析表明,所获得的解决方案是稳健的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modeling optimal drone fleet size considering stochastic demand

The last mile delivery is particularly challenging for stochastic deliveries with narrow time windows. This topic is timely due to the rise of e-commerce and courier type services and the impacts of fleet size and vehicle type on delivery costs. A novel contribution of this research is to provide an optimization approach, extending the newsvendor model, to provide an optimal drone fleet sizing solution with stochastic demand in terms of number of deliveries and deliveries weight or payload from one central depot. The solutions obtained are robust, as shown in a comprehensive sensitivity analysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.60
自引率
0.00%
发文量
24
审稿时长
129 days
期刊介绍: The EURO Journal on Transportation and Logistics promotes the use of mathematics in general, and operations research in particular, in the context of transportation and logistics. It is a forum for the presentation of original mathematical models, methodologies and computational results, focussing on advanced applications in transportation and logistics. The journal publishes two types of document: (i) research articles and (ii) tutorials. A research article presents original methodological contributions to the field (e.g. new mathematical models, new algorithms, new simulation techniques). A tutorial provides an introduction to an advanced topic, designed to ease the use of the relevant methodology by researchers and practitioners.
期刊最新文献
Modeling and solving a corporate vehicle-sharing problem combined with other modes of transport A fair multi-commodity two-echelon distribution problem Price optimal routing in public transportation Inbound traffic capture link-design problem independent of assumptions on users’ route choices The role of traffic simulation in shaping effective and sustainable innovative urban delivery interventions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1