UbiHeart:通过实时面部视频进行无创血压监测的新方法

Q2 Health Professions Smart Health Pub Date : 2024-03-20 DOI:10.1016/j.smhl.2024.100473
Kazi Shafiul Alam, Sayed Mashroor Mamun, Masud Rabbani, Parama Sridevi, Sheikh Iqbal Ahamed
{"title":"UbiHeart:通过实时面部视频进行无创血压监测的新方法","authors":"Kazi Shafiul Alam,&nbsp;Sayed Mashroor Mamun,&nbsp;Masud Rabbani,&nbsp;Parama Sridevi,&nbsp;Sheikh Iqbal Ahamed","doi":"10.1016/j.smhl.2024.100473","DOIUrl":null,"url":null,"abstract":"<div><p>Monitoring blood pressure (BP) is an essential component of evaluating cardiovascular health, aiding in the early detection and management of hypertension-related complications. Traditional methods of BP measurement often involve invasive or cumbersome devices, leading to discomfort and reduced compliance. We propose a framework to monitor BP non-invasively, analyzing the face video captured by a webcam or smartphone camera leveraging the relationship of image-based Pulse Transit Time (iPTT) and Heart Rate Variability (HRV) with BP. We have built a dataset of 90 sets of collected videos using a mobile phone front camera and BP data from a standard digital BP monitor from 12 individuals from an approved Institutional Review Board (IRB) to evaluate our system. We have got a Mean Absolute Error (MAE) of <span><math><mrow><mn>10</mn><mo>.</mo><mn>35</mn><mo>+</mo><mo>/</mo><mo>−</mo><mn>2</mn><mo>.</mo><mn>5</mn></mrow></math></span> mmHg for systolic BP (SBP) and <span><math><mrow><mn>7</mn><mo>.</mo><mn>8</mn><mo>+</mo><mo>/</mo><mo>−</mo><mn>1</mn><mo>.</mo><mn>5</mn></mrow></math></span> mmHg for diastolic BP (DBP) while using the HRV representation RMSSD. On the other hand, an MAE of <span><math><mrow><mn>8</mn><mo>.</mo><mn>25</mn><mo>+</mo><mo>/</mo><mo>−</mo><mn>3</mn><mo>.</mo><mn>5</mn></mrow></math></span> mmHg for SBP and <span><math><mrow><mn>7</mn><mo>.</mo><mn>7</mn><mo>+</mo><mo>/</mo><mo>−</mo><mn>2</mn><mo>.</mo><mn>5</mn></mrow></math></span> mmHg for DBP while using the HRV representation SDRR. Finally, we have developed a framework and built a real-time system to monitor BP as a mobile and web-based application that can facilitate early detection of trends and anomalies, allowing healthcare providers to intervene promptly and personalize treatment plans.</p></div>","PeriodicalId":37151,"journal":{"name":"Smart Health","volume":"32 ","pages":"Article 100473"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"UbiHeart: A novel approach for non-invasive blood pressure monitoring through real-time facial video\",\"authors\":\"Kazi Shafiul Alam,&nbsp;Sayed Mashroor Mamun,&nbsp;Masud Rabbani,&nbsp;Parama Sridevi,&nbsp;Sheikh Iqbal Ahamed\",\"doi\":\"10.1016/j.smhl.2024.100473\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Monitoring blood pressure (BP) is an essential component of evaluating cardiovascular health, aiding in the early detection and management of hypertension-related complications. Traditional methods of BP measurement often involve invasive or cumbersome devices, leading to discomfort and reduced compliance. We propose a framework to monitor BP non-invasively, analyzing the face video captured by a webcam or smartphone camera leveraging the relationship of image-based Pulse Transit Time (iPTT) and Heart Rate Variability (HRV) with BP. We have built a dataset of 90 sets of collected videos using a mobile phone front camera and BP data from a standard digital BP monitor from 12 individuals from an approved Institutional Review Board (IRB) to evaluate our system. We have got a Mean Absolute Error (MAE) of <span><math><mrow><mn>10</mn><mo>.</mo><mn>35</mn><mo>+</mo><mo>/</mo><mo>−</mo><mn>2</mn><mo>.</mo><mn>5</mn></mrow></math></span> mmHg for systolic BP (SBP) and <span><math><mrow><mn>7</mn><mo>.</mo><mn>8</mn><mo>+</mo><mo>/</mo><mo>−</mo><mn>1</mn><mo>.</mo><mn>5</mn></mrow></math></span> mmHg for diastolic BP (DBP) while using the HRV representation RMSSD. On the other hand, an MAE of <span><math><mrow><mn>8</mn><mo>.</mo><mn>25</mn><mo>+</mo><mo>/</mo><mo>−</mo><mn>3</mn><mo>.</mo><mn>5</mn></mrow></math></span> mmHg for SBP and <span><math><mrow><mn>7</mn><mo>.</mo><mn>7</mn><mo>+</mo><mo>/</mo><mo>−</mo><mn>2</mn><mo>.</mo><mn>5</mn></mrow></math></span> mmHg for DBP while using the HRV representation SDRR. Finally, we have developed a framework and built a real-time system to monitor BP as a mobile and web-based application that can facilitate early detection of trends and anomalies, allowing healthcare providers to intervene promptly and personalize treatment plans.</p></div>\",\"PeriodicalId\":37151,\"journal\":{\"name\":\"Smart Health\",\"volume\":\"32 \",\"pages\":\"Article 100473\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Smart Health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352648324000291\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Health Professions\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Health","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352648324000291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Health Professions","Score":null,"Total":0}
引用次数: 0

摘要

监测血压(BP)是评估心血管健康状况的重要组成部分,有助于早期发现和控制高血压相关并发症。传统的血压测量方法通常需要使用侵入性或笨重的设备,从而导致不适感和依从性降低。我们提出了一种无创血压监测框架,利用基于图像的脉搏传输时间(iPTT)和心率变异性(HRV)与血压的关系,分析网络摄像头或智能手机摄像头捕捉到的面部视频。我们建立了一个数据集,其中包括使用手机前置摄像头采集的 90 组视频,以及来自标准数字血压计的血压数据,这些数据来自获得机构审查委员会(IRB)批准的 12 名个人,用于评估我们的系统。在使用心率变异表示法 RMSSD 时,收缩压(SBP)的平均绝对误差(MAE)为 10.35+/-2.5 mmHg,舒张压(DBP)的平均绝对误差(MAE)为 7.8+/-1.5 mmHg。另一方面,使用心率变异表示法 SDRR 时,SBP 的 MAE 为 8.25+/-3.5 mmHg,DBP 为 7.7+/-2.5 mmHg。最后,我们开发了一个框架,并建立了一个实时系统来监测血压,作为一个移动和基于网络的应用程序,它可以促进早期发现趋势和异常,使医疗服务提供者能够及时干预并制定个性化的治疗方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
UbiHeart: A novel approach for non-invasive blood pressure monitoring through real-time facial video

Monitoring blood pressure (BP) is an essential component of evaluating cardiovascular health, aiding in the early detection and management of hypertension-related complications. Traditional methods of BP measurement often involve invasive or cumbersome devices, leading to discomfort and reduced compliance. We propose a framework to monitor BP non-invasively, analyzing the face video captured by a webcam or smartphone camera leveraging the relationship of image-based Pulse Transit Time (iPTT) and Heart Rate Variability (HRV) with BP. We have built a dataset of 90 sets of collected videos using a mobile phone front camera and BP data from a standard digital BP monitor from 12 individuals from an approved Institutional Review Board (IRB) to evaluate our system. We have got a Mean Absolute Error (MAE) of 10.35+/2.5 mmHg for systolic BP (SBP) and 7.8+/1.5 mmHg for diastolic BP (DBP) while using the HRV representation RMSSD. On the other hand, an MAE of 8.25+/3.5 mmHg for SBP and 7.7+/2.5 mmHg for DBP while using the HRV representation SDRR. Finally, we have developed a framework and built a real-time system to monitor BP as a mobile and web-based application that can facilitate early detection of trends and anomalies, allowing healthcare providers to intervene promptly and personalize treatment plans.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Smart Health
Smart Health Computer Science-Computer Science Applications
CiteScore
6.50
自引率
0.00%
发文量
81
期刊最新文献
Editorial Board Smart health practices: Strategies to improve healthcare efficiency through digital twin technology Human knowledge-based artificial intelligence methods for skin cancer management: Accuracy and interpretability study SAFE: Sound Analysis for Fall Event detection using machine learning Latent Space Representation of Adversarial AutoEncoder for Human Activity Recognition: Application to a low-cost commercial force plate and inertial measurement units
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1