S. C. Tripathi, Karnam Venkatesh, Nitesh Kumar, R P Meena
{"title":"挖掘水稻残留物的潜力 - 利用不同的氮含量提高小麦的产量、利润和土壤健康水平","authors":"S. C. Tripathi, Karnam Venkatesh, Nitesh Kumar, R P Meena","doi":"10.1007/s42106-024-00288-1","DOIUrl":null,"url":null,"abstract":"<p>Rice residue burning poses a significant challenge in the rice-wheat cropping system of India, leading to environmental pollution, health issues, and substantial nutrient loss. To combat this menace, a three-year study (2020-21 to 2022-23) was conducted, investigating the effects of rice residue retention (RRR) and rice residue incorporation (RRI) at graded N levels (0, 50, 100, 150, and 200 kg/ha) alongside farmers’ practices. The primary objective was to enhance wheat productivity, profitability, and soil fertility within this system. Pooled analysis revealed that RRR outperformed RRI at lower nitrogen doses, while RRI excelled with 7.5%, 7.4%, and 10.0% higher biological yields at higher nitrogen doses (100, 150, and 200 kg/ha). The success of RRR and RRI was attributed to 10.5% and 5.0% higher effective tiller/m<sup>2</sup>, respectively, compared to farmers’ practices at 150 kg N/ha. Notably, RRR exhibited superior NDVI values at the flag leaf stage (0.76) over farmers’ practices (0.73). At the 150 kg N/ha, RRR displayed a 9.6% lower cost of cultivation compared to farmers’ practices, with 19.6% higher net returns at lower N levels (50 kg/ha), suggesting its greater benefits under low-input conditions. Furthermore, RRR showed the highest benefit-cost ratio (2.75) at 150 kg N/ha, followed by RRI (2.59) and farmers’ practices (2.55). Over the three-year period, RRR significantly increased organic carbon content (0.49–0.54%) compared to the initial value (0.38%), affirming its long-term benefits. Consequently, the adoption of RRR by farmers is a preferable eco-friendly option over RRI and present practices for enhancing wheat productivity within the rice-wheat system. Due to 60–65% saving of fuel with the practice of zero tillage along with rice residue retention, it can reduce CO<sub>2</sub> emission by 120 kg/ha, therefore, its implementation can reduce CO<sub>2</sub> release by 1.62 MT in South Asia per year. Ultimately, it can meet the target of Paris Agreement of limiting global warming to 1.5 °C above pre-industrial levels and reaching net-zero CO<sub>2</sub> emissions globally by 2050.</p>","PeriodicalId":54947,"journal":{"name":"International Journal of Plant Production","volume":"29 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unravelling the Potential of Rice Residue - Boosting Wheat’s Productivity, Profit, and Soil Health with Varying N Levels\",\"authors\":\"S. C. Tripathi, Karnam Venkatesh, Nitesh Kumar, R P Meena\",\"doi\":\"10.1007/s42106-024-00288-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Rice residue burning poses a significant challenge in the rice-wheat cropping system of India, leading to environmental pollution, health issues, and substantial nutrient loss. To combat this menace, a three-year study (2020-21 to 2022-23) was conducted, investigating the effects of rice residue retention (RRR) and rice residue incorporation (RRI) at graded N levels (0, 50, 100, 150, and 200 kg/ha) alongside farmers’ practices. The primary objective was to enhance wheat productivity, profitability, and soil fertility within this system. Pooled analysis revealed that RRR outperformed RRI at lower nitrogen doses, while RRI excelled with 7.5%, 7.4%, and 10.0% higher biological yields at higher nitrogen doses (100, 150, and 200 kg/ha). The success of RRR and RRI was attributed to 10.5% and 5.0% higher effective tiller/m<sup>2</sup>, respectively, compared to farmers’ practices at 150 kg N/ha. Notably, RRR exhibited superior NDVI values at the flag leaf stage (0.76) over farmers’ practices (0.73). At the 150 kg N/ha, RRR displayed a 9.6% lower cost of cultivation compared to farmers’ practices, with 19.6% higher net returns at lower N levels (50 kg/ha), suggesting its greater benefits under low-input conditions. Furthermore, RRR showed the highest benefit-cost ratio (2.75) at 150 kg N/ha, followed by RRI (2.59) and farmers’ practices (2.55). Over the three-year period, RRR significantly increased organic carbon content (0.49–0.54%) compared to the initial value (0.38%), affirming its long-term benefits. Consequently, the adoption of RRR by farmers is a preferable eco-friendly option over RRI and present practices for enhancing wheat productivity within the rice-wheat system. Due to 60–65% saving of fuel with the practice of zero tillage along with rice residue retention, it can reduce CO<sub>2</sub> emission by 120 kg/ha, therefore, its implementation can reduce CO<sub>2</sub> release by 1.62 MT in South Asia per year. Ultimately, it can meet the target of Paris Agreement of limiting global warming to 1.5 °C above pre-industrial levels and reaching net-zero CO<sub>2</sub> emissions globally by 2050.</p>\",\"PeriodicalId\":54947,\"journal\":{\"name\":\"International Journal of Plant Production\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Plant Production\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s42106-024-00288-1\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Plant Production","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s42106-024-00288-1","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
Unravelling the Potential of Rice Residue - Boosting Wheat’s Productivity, Profit, and Soil Health with Varying N Levels
Rice residue burning poses a significant challenge in the rice-wheat cropping system of India, leading to environmental pollution, health issues, and substantial nutrient loss. To combat this menace, a three-year study (2020-21 to 2022-23) was conducted, investigating the effects of rice residue retention (RRR) and rice residue incorporation (RRI) at graded N levels (0, 50, 100, 150, and 200 kg/ha) alongside farmers’ practices. The primary objective was to enhance wheat productivity, profitability, and soil fertility within this system. Pooled analysis revealed that RRR outperformed RRI at lower nitrogen doses, while RRI excelled with 7.5%, 7.4%, and 10.0% higher biological yields at higher nitrogen doses (100, 150, and 200 kg/ha). The success of RRR and RRI was attributed to 10.5% and 5.0% higher effective tiller/m2, respectively, compared to farmers’ practices at 150 kg N/ha. Notably, RRR exhibited superior NDVI values at the flag leaf stage (0.76) over farmers’ practices (0.73). At the 150 kg N/ha, RRR displayed a 9.6% lower cost of cultivation compared to farmers’ practices, with 19.6% higher net returns at lower N levels (50 kg/ha), suggesting its greater benefits under low-input conditions. Furthermore, RRR showed the highest benefit-cost ratio (2.75) at 150 kg N/ha, followed by RRI (2.59) and farmers’ practices (2.55). Over the three-year period, RRR significantly increased organic carbon content (0.49–0.54%) compared to the initial value (0.38%), affirming its long-term benefits. Consequently, the adoption of RRR by farmers is a preferable eco-friendly option over RRI and present practices for enhancing wheat productivity within the rice-wheat system. Due to 60–65% saving of fuel with the practice of zero tillage along with rice residue retention, it can reduce CO2 emission by 120 kg/ha, therefore, its implementation can reduce CO2 release by 1.62 MT in South Asia per year. Ultimately, it can meet the target of Paris Agreement of limiting global warming to 1.5 °C above pre-industrial levels and reaching net-zero CO2 emissions globally by 2050.
期刊介绍:
IJPP publishes original research papers and review papers related to physiology, ecology and production of field crops and forages at field, farm and landscape level. Preferred topics are: (1) yield gap in cropping systems: estimation, causes and closing measures, (2) ecological intensification of plant production, (3) improvement of water and nutrients management in plant production systems, (4) environmental impact of plant production, (5) climate change and plant production, and (6) responses of plant communities to extreme weather conditions.
Please note that IJPP does not publish papers with a background in genetics and plant breeding, plant molecular biology, plant biotechnology, as well as soil science, meteorology, product process and post-harvest management unless they are strongly related to plant production under field conditions.
Papers based on limited data or of local importance, and results from routine experiments will not normally be considered for publication. Field experiments should include at least two years and/or two environments. Papers on plants other than field crops and forages, and papers based on controlled-environment experiments will not be considered.