{"title":"由红鹿(Cervus elaphus L.)引起的树皮剥落的常量取样设计:基于九个完全普查林分的模拟研究","authors":"Christoph Hahn, Sonja Vospernik","doi":"10.1007/s10342-024-01670-4","DOIUrl":null,"url":null,"abstract":"<p>Precise assessment of bark stripping damage is of high economic importance, since bark stripping makes wood unusable for saw timber and it is important for compensation payments for game damage. Bark stripping is clustered and decreases with increasing tree diameter, so that common forest inventories, optimized for assessing timber production variables such as standing timber volume, do not provide adequately precise estimates of bark stripping damage. In this study we analysed different sampling designs (random sampling, systematic sampling), tree selection methods (fixed radius plot, angle count sampling) and number of plots and plot sizes (plot radius: 2–20 m; basal area factor: 1–6m<sup>2</sup>/ha) for bark stripping assessment. The analysis is based on simulation studies in 9 fully censused stands (9026 trees). Simulations were done for actually assessed damage and randomly distributed damage and each scenario was repeated 100 times with different random points or different random grid locations. Systematic sampling was considerably more precise than random sampling in both scenarios. Sampling intensities to attain a standard error of 10% ranged between 12 and 18% dependent on the plot size. For a given sampling intensity, precision increased with decreasing plot size or increasing basal area factor. This implies, however, a large number of plots to be measured, which is expensive, when travel costs are high. Differences between tree selection by fixed radius plots or angle count sampling were minor. For bark stripping damage, we recommend sampling with fixed radius plots with a radius of 4–6 m and the measurement of approximately 230 or 150 plots, respectively.</p>","PeriodicalId":11996,"journal":{"name":"European Journal of Forest Research","volume":"3 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stand-level sampling designs for bark stripping caused by red deer (Cervus elaphus L.): simulation studies based on nine fully censused stands\",\"authors\":\"Christoph Hahn, Sonja Vospernik\",\"doi\":\"10.1007/s10342-024-01670-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Precise assessment of bark stripping damage is of high economic importance, since bark stripping makes wood unusable for saw timber and it is important for compensation payments for game damage. Bark stripping is clustered and decreases with increasing tree diameter, so that common forest inventories, optimized for assessing timber production variables such as standing timber volume, do not provide adequately precise estimates of bark stripping damage. In this study we analysed different sampling designs (random sampling, systematic sampling), tree selection methods (fixed radius plot, angle count sampling) and number of plots and plot sizes (plot radius: 2–20 m; basal area factor: 1–6m<sup>2</sup>/ha) for bark stripping assessment. The analysis is based on simulation studies in 9 fully censused stands (9026 trees). Simulations were done for actually assessed damage and randomly distributed damage and each scenario was repeated 100 times with different random points or different random grid locations. Systematic sampling was considerably more precise than random sampling in both scenarios. Sampling intensities to attain a standard error of 10% ranged between 12 and 18% dependent on the plot size. For a given sampling intensity, precision increased with decreasing plot size or increasing basal area factor. This implies, however, a large number of plots to be measured, which is expensive, when travel costs are high. Differences between tree selection by fixed radius plots or angle count sampling were minor. For bark stripping damage, we recommend sampling with fixed radius plots with a radius of 4–6 m and the measurement of approximately 230 or 150 plots, respectively.</p>\",\"PeriodicalId\":11996,\"journal\":{\"name\":\"European Journal of Forest Research\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Forest Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s10342-024-01670-4\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Forest Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10342-024-01670-4","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
Stand-level sampling designs for bark stripping caused by red deer (Cervus elaphus L.): simulation studies based on nine fully censused stands
Precise assessment of bark stripping damage is of high economic importance, since bark stripping makes wood unusable for saw timber and it is important for compensation payments for game damage. Bark stripping is clustered and decreases with increasing tree diameter, so that common forest inventories, optimized for assessing timber production variables such as standing timber volume, do not provide adequately precise estimates of bark stripping damage. In this study we analysed different sampling designs (random sampling, systematic sampling), tree selection methods (fixed radius plot, angle count sampling) and number of plots and plot sizes (plot radius: 2–20 m; basal area factor: 1–6m2/ha) for bark stripping assessment. The analysis is based on simulation studies in 9 fully censused stands (9026 trees). Simulations were done for actually assessed damage and randomly distributed damage and each scenario was repeated 100 times with different random points or different random grid locations. Systematic sampling was considerably more precise than random sampling in both scenarios. Sampling intensities to attain a standard error of 10% ranged between 12 and 18% dependent on the plot size. For a given sampling intensity, precision increased with decreasing plot size or increasing basal area factor. This implies, however, a large number of plots to be measured, which is expensive, when travel costs are high. Differences between tree selection by fixed radius plots or angle count sampling were minor. For bark stripping damage, we recommend sampling with fixed radius plots with a radius of 4–6 m and the measurement of approximately 230 or 150 plots, respectively.
期刊介绍:
The European Journal of Forest Research focuses on publishing innovative results of empirical or model-oriented studies which contribute to the development of broad principles underlying forest ecosystems, their functions and services.
Papers which exclusively report methods, models, techniques or case studies are beyond the scope of the journal, while papers on studies at the molecular or cellular level will be considered where they address the relevance of their results to the understanding of ecosystem structure and function. Papers relating to forest operations and forest engineering will be considered if they are tailored within a forest ecosystem context.