{"title":"钢/铝自冲铆接接头的材料-结构-工艺-性能综合优化方法","authors":"","doi":"10.1007/s00170-024-13483-1","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>To improve the reliability of the connection of various steel/aluminum dissimilar materials, an integrated optimization method of material-structure-process-performance is proposed to realize the optimal design of process parameters. First, the Johnson–Cook material model and failure fracture model are established to ensure the accuracy of the simulation model. Then, an integrated simulation analysis for self-piercing riveted joint forming and tensile mechanical performance is established considering the residual information of the joint forming process. Compared with the experimental results, the accuracy of the established model is higher than the model without considering the residual information. Finally, a hybrid sequence approximate optimization that comprehensively considers the forming quality and tensile mechanical performance is constructed to determine the optimal riveting parameters. Compared with the initial design, the maximum pull-out force, maximum shear force, and maximum peeling force of the optimized design for DC01 and 5754 rivets are increased by 35.66%, 8.6%, and 22.43%, respectively, and the maximum pullout force, maximum shear force and maximum peeling force of the optimized design for HC280 and 5754 rivets are increased by 1.490%, 1.292%, and 6.867%, respectively. Moreover, the accuracy and efficiency of self-piercing riveting process design are improved.</p>","PeriodicalId":50345,"journal":{"name":"International Journal of Advanced Manufacturing Technology","volume":"47 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Material-structure-process-performance integrated optimization method of steel/aluminum self-piercing riveted joint\",\"authors\":\"\",\"doi\":\"10.1007/s00170-024-13483-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>To improve the reliability of the connection of various steel/aluminum dissimilar materials, an integrated optimization method of material-structure-process-performance is proposed to realize the optimal design of process parameters. First, the Johnson–Cook material model and failure fracture model are established to ensure the accuracy of the simulation model. Then, an integrated simulation analysis for self-piercing riveted joint forming and tensile mechanical performance is established considering the residual information of the joint forming process. Compared with the experimental results, the accuracy of the established model is higher than the model without considering the residual information. Finally, a hybrid sequence approximate optimization that comprehensively considers the forming quality and tensile mechanical performance is constructed to determine the optimal riveting parameters. Compared with the initial design, the maximum pull-out force, maximum shear force, and maximum peeling force of the optimized design for DC01 and 5754 rivets are increased by 35.66%, 8.6%, and 22.43%, respectively, and the maximum pullout force, maximum shear force and maximum peeling force of the optimized design for HC280 and 5754 rivets are increased by 1.490%, 1.292%, and 6.867%, respectively. Moreover, the accuracy and efficiency of self-piercing riveting process design are improved.</p>\",\"PeriodicalId\":50345,\"journal\":{\"name\":\"International Journal of Advanced Manufacturing Technology\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advanced Manufacturing Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00170-024-13483-1\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Manufacturing Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00170-024-13483-1","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Material-structure-process-performance integrated optimization method of steel/aluminum self-piercing riveted joint
Abstract
To improve the reliability of the connection of various steel/aluminum dissimilar materials, an integrated optimization method of material-structure-process-performance is proposed to realize the optimal design of process parameters. First, the Johnson–Cook material model and failure fracture model are established to ensure the accuracy of the simulation model. Then, an integrated simulation analysis for self-piercing riveted joint forming and tensile mechanical performance is established considering the residual information of the joint forming process. Compared with the experimental results, the accuracy of the established model is higher than the model without considering the residual information. Finally, a hybrid sequence approximate optimization that comprehensively considers the forming quality and tensile mechanical performance is constructed to determine the optimal riveting parameters. Compared with the initial design, the maximum pull-out force, maximum shear force, and maximum peeling force of the optimized design for DC01 and 5754 rivets are increased by 35.66%, 8.6%, and 22.43%, respectively, and the maximum pullout force, maximum shear force and maximum peeling force of the optimized design for HC280 and 5754 rivets are increased by 1.490%, 1.292%, and 6.867%, respectively. Moreover, the accuracy and efficiency of self-piercing riveting process design are improved.
期刊介绍:
The International Journal of Advanced Manufacturing Technology bridges the gap between pure research journals and the more practical publications on advanced manufacturing and systems. It therefore provides an outstanding forum for papers covering applications-based research topics relevant to manufacturing processes, machines and process integration.