作为细菌感染高级研究平台的芯片上血管技术

IF 2.6 4区 工程技术 Q2 BIOCHEMICAL RESEARCH METHODS Biomicrofluidics Pub Date : 2024-03-25 DOI:10.1063/5.0179281
Lily Isabelle Gaudreau, Elizabeth J. Stewart
{"title":"作为细菌感染高级研究平台的芯片上血管技术","authors":"Lily Isabelle Gaudreau, Elizabeth J. Stewart","doi":"10.1063/5.0179281","DOIUrl":null,"url":null,"abstract":"Bacterial infections frequently occur within or near the vascular network as the vascular network connects organ systems and is essential in delivering and removing blood, essential nutrients, and waste products to and from organs. In turn, the vasculature plays a key role in the host immune response to bacterial infections. Technological advancements in microfluidic device design and development have yielded increasingly sophisticated and physiologically relevant models of the vasculature including vasculature-on-a-chip and organ-on-a-chip models. This review aims to highlight advancements in microfluidic device development that have enabled studies of the vascular response to bacteria and bacterial-derived molecules at or near the vascular interface. In the first section of this review, we discuss the use of parallel plate flow chambers and flow cells in studies of bacterial adhesion to the vasculature. We then highlight microfluidic models of the vasculature that have been utilized to study bacteria and bacterial-derived molecules at or near the vascular interface. Next, we review organ-on-a-chip models inclusive of the vasculature and pathogenic bacteria or bacterial-derived molecules that stimulate an inflammatory response within the model system. Finally, we provide recommendations for future research in advancing the understanding of host–bacteria interactions and responses during infections as well as in developing innovative antimicrobials for preventing and treating bacterial infections that capitalize on technological advancements in microfluidic device design and development.","PeriodicalId":8855,"journal":{"name":"Biomicrofluidics","volume":"13 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vasculature-on-a-chip technologies as platforms for advanced studies of bacterial infections\",\"authors\":\"Lily Isabelle Gaudreau, Elizabeth J. Stewart\",\"doi\":\"10.1063/5.0179281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bacterial infections frequently occur within or near the vascular network as the vascular network connects organ systems and is essential in delivering and removing blood, essential nutrients, and waste products to and from organs. In turn, the vasculature plays a key role in the host immune response to bacterial infections. Technological advancements in microfluidic device design and development have yielded increasingly sophisticated and physiologically relevant models of the vasculature including vasculature-on-a-chip and organ-on-a-chip models. This review aims to highlight advancements in microfluidic device development that have enabled studies of the vascular response to bacteria and bacterial-derived molecules at or near the vascular interface. In the first section of this review, we discuss the use of parallel plate flow chambers and flow cells in studies of bacterial adhesion to the vasculature. We then highlight microfluidic models of the vasculature that have been utilized to study bacteria and bacterial-derived molecules at or near the vascular interface. Next, we review organ-on-a-chip models inclusive of the vasculature and pathogenic bacteria or bacterial-derived molecules that stimulate an inflammatory response within the model system. Finally, we provide recommendations for future research in advancing the understanding of host–bacteria interactions and responses during infections as well as in developing innovative antimicrobials for preventing and treating bacterial infections that capitalize on technological advancements in microfluidic device design and development.\",\"PeriodicalId\":8855,\"journal\":{\"name\":\"Biomicrofluidics\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomicrofluidics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0179281\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomicrofluidics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0179281","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

细菌感染经常发生在血管网络内部或附近,因为血管网络连接着器官系统,在向器官输送和排出血液、必需营养物质和废物方面至关重要。反过来,血管在宿主对细菌感染的免疫反应中也起着关键作用。微流控设备设计和开发方面的技术进步已产生了越来越复杂和生理相关的血管模型,包括芯片上的血管和芯片上的器官模型。本综述旨在重点介绍微流控设备开发方面的进展,这些进展使得在血管界面或血管界面附近研究血管对细菌和细菌衍生分子的反应成为可能。在综述的第一部分,我们将讨论平行板流动室和流动细胞在细菌粘附血管研究中的应用。然后,我们重点介绍用于研究血管界面或其附近细菌和细菌衍生分子的微流控血管模型。接下来,我们回顾了包含血管和致病细菌或细菌衍生分子的器官芯片模型,这些细菌或细菌衍生分子会在模型系统中刺激炎症反应。最后,我们对今后的研究提出了建议,以促进对感染期间宿主与细菌之间相互作用和反应的了解,并利用微流体设备设计和开发方面的技术进步,开发用于预防和治疗细菌感染的创新型抗菌药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Vasculature-on-a-chip technologies as platforms for advanced studies of bacterial infections
Bacterial infections frequently occur within or near the vascular network as the vascular network connects organ systems and is essential in delivering and removing blood, essential nutrients, and waste products to and from organs. In turn, the vasculature plays a key role in the host immune response to bacterial infections. Technological advancements in microfluidic device design and development have yielded increasingly sophisticated and physiologically relevant models of the vasculature including vasculature-on-a-chip and organ-on-a-chip models. This review aims to highlight advancements in microfluidic device development that have enabled studies of the vascular response to bacteria and bacterial-derived molecules at or near the vascular interface. In the first section of this review, we discuss the use of parallel plate flow chambers and flow cells in studies of bacterial adhesion to the vasculature. We then highlight microfluidic models of the vasculature that have been utilized to study bacteria and bacterial-derived molecules at or near the vascular interface. Next, we review organ-on-a-chip models inclusive of the vasculature and pathogenic bacteria or bacterial-derived molecules that stimulate an inflammatory response within the model system. Finally, we provide recommendations for future research in advancing the understanding of host–bacteria interactions and responses during infections as well as in developing innovative antimicrobials for preventing and treating bacterial infections that capitalize on technological advancements in microfluidic device design and development.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomicrofluidics
Biomicrofluidics 生物-纳米科技
CiteScore
5.80
自引率
3.10%
发文量
68
审稿时长
1.3 months
期刊介绍: Biomicrofluidics (BMF) is an online-only journal published by AIP Publishing to rapidly disseminate research in fundamental physicochemical mechanisms associated with microfluidic and nanofluidic phenomena. BMF also publishes research in unique microfluidic and nanofluidic techniques for diagnostic, medical, biological, pharmaceutical, environmental, and chemical applications. BMF offers quick publication, multimedia capability, and worldwide circulation among academic, national, and industrial laboratories. With a primary focus on high-quality original research articles, BMF also organizes special sections that help explain and define specific challenges unique to the interdisciplinary field of biomicrofluidics. Microfluidic and nanofluidic actuation (electrokinetics, acoustofluidics, optofluidics, capillary) Liquid Biopsy (microRNA profiling, circulating tumor cell isolation, exosome isolation, circulating tumor DNA quantification) Cell sorting, manipulation, and transfection (di/electrophoresis, magnetic beads, optical traps, electroporation) Molecular Separation and Concentration (isotachophoresis, concentration polarization, di/electrophoresis, magnetic beads, nanoparticles) Cell culture and analysis(single cell assays, stimuli response, stem cell transfection) Genomic and proteomic analysis (rapid gene sequencing, DNA/protein/carbohydrate arrays) Biosensors (immuno-assay, nucleic acid fluorescent assay, colorimetric assay, enzyme amplification, plasmonic and Raman nano-reporter, molecular beacon, FRET, aptamer, nanopore, optical fibers) Biophysical transport and characterization (DNA, single protein, ion channel and membrane dynamics, cell motility and communication mechanisms, electrophysiology, patch clamping). Etc...
期刊最新文献
Data-driven models for microfluidics: A short review. Applications of microfluidics in mRNA vaccine development: A review. Viscoelastic particle focusing and separation in a microfluidic channel with a cruciform section. Microfluidics for foodborne bacteria analysis: Moving toward multiple technologies integration. Wicking pumps for microfluidics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1